Spaces:
Sleeping
Sleeping
n0v33n
commited on
Commit
Β·
8fbc17c
1
Parent(s):
eb92ba2
add gradio app
Browse files- gradioapp.py +401 -0
gradioapp.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import pandas as pd
|
5 |
+
import random
|
6 |
+
import warnings
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from langchain_tavily import TavilySearch
|
9 |
+
import google.generativeai as genai
|
10 |
+
import gdown
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
17 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
18 |
+
|
19 |
+
user_sessions = {}
|
20 |
+
if not GOOGLE_API_KEY:
|
21 |
+
raise ValueError("GOOGLE_API_KEY environment variable is required.")
|
22 |
+
|
23 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
24 |
+
|
25 |
+
# βββ Load or fallback LeetCode data ββββββββββββββββββββββββββ
|
26 |
+
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1KK9Mnm15hV3ALJo-quJndftWfaujJ7K2_zHMCTo5mGE/"
|
27 |
+
FILE_ID = GOOGLE_SHEET_URL.split("/d/")[1].split("/")[0]
|
28 |
+
DOWNLOAD_URL = f"https://drive.google.com/uc?export=download&id={FILE_ID}"
|
29 |
+
OUTPUT_FILE = "leetcode_downloaded.xlsx"
|
30 |
+
|
31 |
+
try:
|
32 |
+
print("Downloading LeetCode data...")
|
33 |
+
gdown.download(DOWNLOAD_URL, OUTPUT_FILE, quiet=False)
|
34 |
+
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
|
35 |
+
print(f"Loaded {len(LEETCODE_DATA)} problems")
|
36 |
+
except Exception:
|
37 |
+
print("Failed to download/read. Using fallback.")
|
38 |
+
LEETCODE_DATA = pd.DataFrame([
|
39 |
+
{"problem_no": 3151, "problem_level": "Easy", "problem_statement": "special array",
|
40 |
+
"problem_link": "https://leetcode.com/problems/special-array-i/?envType=daily-question&envId=2025-06-01"},
|
41 |
+
{"problem_no": 1752, "problem_level": "Easy", "problem_statement": "check if array is sorted and rotated",
|
42 |
+
"problem_link": "https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/?envType=daily-question&envId=2025-06-01"},
|
43 |
+
{"problem_no": 3105, "problem_level": "Easy", "problem_statement": "longest strictly increasing or strictly decreasing subarray",
|
44 |
+
"problem_link": "https://leetcode.com/problems/longest-strictly-increasing-or-strictly-decreasing-subarray/?envType=daily-question&envId=2025-06-01"},
|
45 |
+
{"problem_no": 1, "problem_level": "Easy", "problem_statement": "two sum",
|
46 |
+
"problem_link": "https://leetcode.com/problems/two-sum/"},
|
47 |
+
{"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers",
|
48 |
+
"problem_link": "https://leetcode.com/problems/add-two-numbers/"},
|
49 |
+
{"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters",
|
50 |
+
"problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"},
|
51 |
+
{"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays",
|
52 |
+
"problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"},
|
53 |
+
{"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring",
|
54 |
+
"problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"}
|
55 |
+
])
|
56 |
+
|
57 |
+
# βββ Helpers & Tools ββββββββββββββββββββββββββββββββββββββββββ
|
58 |
+
|
59 |
+
QUESTION_TYPE_MAPPING = {
|
60 |
+
"easy": "Easy", "Easy": "Easy",
|
61 |
+
"medium": "Medium", "Medium": "Medium",
|
62 |
+
"hard": "Hard", "Hard": "Hard"
|
63 |
+
}
|
64 |
+
|
65 |
+
def preprocess_query(query: str) -> str:
|
66 |
+
for k, v in QUESTION_TYPE_MAPPING.items():
|
67 |
+
query = re.sub(rf'\b{k}\b', v, query, flags=re.IGNORECASE)
|
68 |
+
query = re.sub(r'\bproblem\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
|
69 |
+
query = re.sub(r'\bquestion\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
|
70 |
+
query = re.sub(r'\b(find|search)\s+interview\s+questions\s+for\s+', '', query, flags=re.IGNORECASE)
|
71 |
+
query = re.sub(r'\binterview\s+questions\b', '', query, flags=re.IGNORECASE).strip()
|
72 |
+
return query
|
73 |
+
|
74 |
+
def get_daily_coding_question(query: str = "") -> dict:
|
75 |
+
try:
|
76 |
+
response = "**Daily Coding Questions**\n\n"
|
77 |
+
|
78 |
+
m = re.search(r'Problem_(\d+)', query, re.IGNORECASE)
|
79 |
+
if m:
|
80 |
+
df = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == int(m.group(1))]
|
81 |
+
if not df.empty:
|
82 |
+
p = df.iloc[0]
|
83 |
+
response += (
|
84 |
+
f"**Problem {p['problem_no']}**\n"
|
85 |
+
f"Level: {p['problem_level']}\n"
|
86 |
+
f"Statement: {p['problem_statement']}\n"
|
87 |
+
f"Link: {p['problem_link']}\n\n"
|
88 |
+
)
|
89 |
+
return {"status": "success", "response": response}
|
90 |
+
else:
|
91 |
+
return {"status": "error", "response": "Problem not found"}
|
92 |
+
|
93 |
+
if query.strip():
|
94 |
+
df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)]
|
95 |
+
else:
|
96 |
+
df = LEETCODE_DATA
|
97 |
+
|
98 |
+
easy_questions = df[df['problem_level'] == 'Easy'].sample(min(3, len(df[df['problem_level'] == 'Easy'])))
|
99 |
+
medium_questions = df[df['problem_level'] == 'Medium'].sample(min(1, len(df[df['problem_level'] == 'Medium'])))
|
100 |
+
hard_questions = df[df['problem_level'] == 'Hard'].sample(min(1, len(df[df['problem_level'] == 'Hard'])))
|
101 |
+
|
102 |
+
response += "**Easy Questions**\n"
|
103 |
+
for i, p in enumerate(easy_questions.itertuples(), 1):
|
104 |
+
response += (
|
105 |
+
f"{i}. Problem {p.problem_no}: {p.problem_statement}\n"
|
106 |
+
f" Level: {p.problem_level}\n"
|
107 |
+
f" Link: {p.problem_link}\n\n"
|
108 |
+
)
|
109 |
+
|
110 |
+
response += "**Medium Question**\n"
|
111 |
+
for p in medium_questions.itertuples():
|
112 |
+
response += (
|
113 |
+
f"Problem {p.problem_no}: {p.problem_statement}\n"
|
114 |
+
f"Level: {p.problem_level}\n"
|
115 |
+
f"Link: {p.problem_link}\n\n"
|
116 |
+
)
|
117 |
+
|
118 |
+
response += "**Hard Question**\n"
|
119 |
+
for p in hard_questions.itertuples():
|
120 |
+
response += (
|
121 |
+
f"Problem {p.problem_no}: {p.problem_statement}\n"
|
122 |
+
f"Level: {p.problem_level}\n"
|
123 |
+
f"Link: {p.problem_link}\n"
|
124 |
+
)
|
125 |
+
|
126 |
+
return {"status": "success", "response": response}
|
127 |
+
except Exception as e:
|
128 |
+
return {"status": "error", "response": f"Error: {e}"}
|
129 |
+
|
130 |
+
def fetch_interview_questions(query: str) -> dict:
|
131 |
+
if not TAVILY_API_KEY:
|
132 |
+
return {"status": "error", "response": "Tavily API key not configured"}
|
133 |
+
|
134 |
+
if not query.strip() or query.lower() in ["a", "interview", "question", "questions"]:
|
135 |
+
return {"status": "error", "response": "Please provide a specific topic for interview questions (e.g., 'Python', 'data structures', 'system design')."}
|
136 |
+
|
137 |
+
try:
|
138 |
+
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=5)
|
139 |
+
search_query = f"{query} interview questions -inurl:(signup | login)"
|
140 |
+
print(f"Executing Tavily search for: {search_query}")
|
141 |
+
|
142 |
+
results = tavily.invoke(search_query)
|
143 |
+
print(f"Raw Tavily results: {results}")
|
144 |
+
|
145 |
+
if not results or not isinstance(results, list) or len(results) == 0:
|
146 |
+
return {"status": "success", "response": "No relevant interview questions found. Try a more specific topic or different keywords."}
|
147 |
+
|
148 |
+
resp = "**Interview Questions Search Results for '{}':**\n\n".format(query)
|
149 |
+
for i, r in enumerate(results, 1):
|
150 |
+
if isinstance(r, dict):
|
151 |
+
title = r.get('title', 'No title')
|
152 |
+
url = r.get('url', 'No URL')
|
153 |
+
content = r.get('content', '')
|
154 |
+
content = content[:200] + 'β¦' if len(content) > 200 else content or "No preview available"
|
155 |
+
resp += f"{i}. **{title}**\n URL: {url}\n Preview: {content}\n\n"
|
156 |
+
else:
|
157 |
+
resp += f"{i}. {str(r)[:200]}{'β¦' if len(str(r)) > 200 else ''}\n\n"
|
158 |
+
|
159 |
+
return {"status": "success", "response": resp}
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
print(f"Tavily search failed: {str(e)}")
|
163 |
+
return {"status": "error", "response": f"Search failed: {str(e)}"}
|
164 |
+
|
165 |
+
def simulate_mock_interview(query: str, user_id: str = "default") -> dict:
|
166 |
+
qtype = "mixed"
|
167 |
+
if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR"
|
168 |
+
if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical"
|
169 |
+
|
170 |
+
if "interview question" in query.lower() and qtype == "mixed":
|
171 |
+
qtype = "HR"
|
172 |
+
|
173 |
+
if qtype == "HR":
|
174 |
+
hr_questions = [
|
175 |
+
"Tell me about yourself.",
|
176 |
+
"What is your greatest weakness?",
|
177 |
+
"Describe a challenge you overcame.",
|
178 |
+
"Why do you want to work here?",
|
179 |
+
"Where do you see yourself in 5 years?",
|
180 |
+
"Why are you leaving your current job?",
|
181 |
+
"Describe a time when you had to work with a difficult team member.",
|
182 |
+
"What are your salary expectations?",
|
183 |
+
"Tell me about a time you failed.",
|
184 |
+
"What motivates you?",
|
185 |
+
"How do you handle stress and pressure?",
|
186 |
+
"Describe your leadership style."
|
187 |
+
]
|
188 |
+
q = random.choice(hr_questions)
|
189 |
+
return {"status": "success", "response": (
|
190 |
+
f"**Mock Interview (HR/Behavioral)**\n\n**Question:** {q}\n\nπ‘ **Tips:**\n"
|
191 |
+
f"- Use the STAR method (Situation, Task, Action, Result)\n"
|
192 |
+
f"- Provide specific examples from your experience\n"
|
193 |
+
f"- Keep your answer concise but detailed\n\n**Your turn to answer!**"
|
194 |
+
)}
|
195 |
+
else:
|
196 |
+
p = LEETCODE_DATA.sample(1).iloc[0]
|
197 |
+
return {"status": "success", "response": (
|
198 |
+
f"**Mock Interview (Technical)**\n\n**Problem:** {p['problem_statement'].title()}\n"
|
199 |
+
f"**Difficulty:** {p['problem_level']}\n**Link:** {p['problem_link']}\n\nπ‘ **Tips:**\n"
|
200 |
+
f"- Think out loud as you solve\n"
|
201 |
+
f"- Ask clarifying questions\n"
|
202 |
+
f"- Discuss time/space complexity\n\n**Explain your approach!**"
|
203 |
+
)}
|
204 |
+
|
205 |
+
# βββ The Enhanced InterviewPrepAgent ββββββββββββββββββββββββββββββ
|
206 |
+
|
207 |
+
class InterviewPrepAgent:
|
208 |
+
def __init__(self):
|
209 |
+
self.model = genai.GenerativeModel('gemini-1.5-flash')
|
210 |
+
self.tools = {
|
211 |
+
"get_daily_coding_question": get_daily_coding_question,
|
212 |
+
"fetch_interview_questions": fetch_interview_questions,
|
213 |
+
"simulate_mock_interview": simulate_mock_interview
|
214 |
+
}
|
215 |
+
self.instruction_text = """
|
216 |
+
You are an interview preparation assistant. Analyze the user's query and determine which tool to use.
|
217 |
+
|
218 |
+
Available tools:
|
219 |
+
1. get_daily_coding_question - For coding practice, LeetCode problems, daily questions
|
220 |
+
2. fetch_interview_questions - For searching interview questions on specific topics
|
221 |
+
3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical)
|
222 |
+
|
223 |
+
Instructions:
|
224 |
+
- If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question
|
225 |
+
- If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions
|
226 |
+
- If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview
|
227 |
+
- If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus
|
228 |
+
|
229 |
+
Respond ONLY with valid JSON in this exact format:
|
230 |
+
{"tool": "tool_name", "args": {"param1": "value1", "param2": "value2"}}
|
231 |
+
|
232 |
+
User Query: {query}
|
233 |
+
"""
|
234 |
+
|
235 |
+
def _classify_intent(self, query: str) -> tuple[str, dict]:
|
236 |
+
query_lower = query.lower()
|
237 |
+
|
238 |
+
# Prioritize HR/behavioral for explicit mentions
|
239 |
+
if any(keyword in query_lower for keyword in ["hr", "behavioral", "give hr questions", "give behavioral questions"]):
|
240 |
+
return "simulate_mock_interview", {"query": query, "user_id": "default"}
|
241 |
+
|
242 |
+
# Handle mock interview or simulation requests
|
243 |
+
if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]):
|
244 |
+
return "simulate_mock_interview", {"query": query, "user_id": "default"}
|
245 |
+
|
246 |
+
# Handle coding-related queries
|
247 |
+
if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]):
|
248 |
+
problem_match = re.search(r'problem\s*(\d+)', query_lower)
|
249 |
+
if problem_match:
|
250 |
+
return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"}
|
251 |
+
|
252 |
+
if "easy" in query_lower:
|
253 |
+
return "get_daily_coding_question", {"query": "Easy"}
|
254 |
+
elif "medium" in query_lower:
|
255 |
+
return "get_daily_coding_question", {"query": "Medium"}
|
256 |
+
elif "hard" in query_lower:
|
257 |
+
return "get_daily_coding_question", {"query": "Hard"}
|
258 |
+
|
259 |
+
return "get_daily_coding_question", {"query": ""}
|
260 |
+
|
261 |
+
# Handle topic-specific interview questions
|
262 |
+
if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \
|
263 |
+
"interview" in query_lower:
|
264 |
+
return "fetch_interview_questions", {"query": query}
|
265 |
+
|
266 |
+
# Fallback to LLM classification
|
267 |
+
try:
|
268 |
+
prompt = self.instruction_text.format(query=query)
|
269 |
+
response = self.model.generate_content(prompt)
|
270 |
+
result = json.loads(response.text.strip())
|
271 |
+
tool_name = result.get("tool")
|
272 |
+
args = result.get("args", {})
|
273 |
+
return tool_name, args
|
274 |
+
except Exception as e:
|
275 |
+
print(f"LLM classification failed: {e}")
|
276 |
+
return "get_daily_coding_question", {"query": ""}
|
277 |
+
|
278 |
+
def process_query(self, query: str, user_id: str = "default", session_id: str = "default") -> str:
|
279 |
+
if not GOOGLE_API_KEY:
|
280 |
+
return "Error: Google API not configured."
|
281 |
+
|
282 |
+
session_key = f"{user_id}_{session_id}"
|
283 |
+
user_sessions.setdefault(session_key, {"history": []})
|
284 |
+
|
285 |
+
tool_name, args = self._classify_intent(query)
|
286 |
+
|
287 |
+
if tool_name not in self.tools:
|
288 |
+
return f"I couldn't understand your request. Please try asking for:\n- Daily coding question\n- Mock interview\n- Interview questions for a specific topic"
|
289 |
+
|
290 |
+
result = self.tools[tool_name](**args)
|
291 |
+
|
292 |
+
user_sessions[session_key]["history"].append({
|
293 |
+
"query": query,
|
294 |
+
"response": result["response"]
|
295 |
+
})
|
296 |
+
|
297 |
+
return result["response"]
|
298 |
+
|
299 |
+
# βββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββ
|
300 |
+
|
301 |
+
agent = InterviewPrepAgent()
|
302 |
+
|
303 |
+
def chat_interface(message, history):
|
304 |
+
"""Handle chat messages and return response"""
|
305 |
+
try:
|
306 |
+
# Preprocess the query
|
307 |
+
processed_query = preprocess_query(message)
|
308 |
+
|
309 |
+
# Get response from agent
|
310 |
+
response = agent.process_query(processed_query, user_id="gradio_user", session_id="session_1")
|
311 |
+
|
312 |
+
return response
|
313 |
+
except Exception as e:
|
314 |
+
return f"Sorry, I encountered an error: {str(e)}"
|
315 |
+
|
316 |
+
def create_examples():
|
317 |
+
"""Create example messages for the interface"""
|
318 |
+
return [
|
319 |
+
["Give me a daily coding question"],
|
320 |
+
["I want to practice mock interview"],
|
321 |
+
["Find interview questions for Python"],
|
322 |
+
["Give me HR interview questions"],
|
323 |
+
["Technical mock interview"],
|
324 |
+
["Search interview questions for data structures"],
|
325 |
+
]
|
326 |
+
|
327 |
+
# Create the Gradio interface
|
328 |
+
with gr.Blocks(
|
329 |
+
title="Interview Prep Assistant",
|
330 |
+
theme=gr.themes.Soft(),
|
331 |
+
css="""
|
332 |
+
.gradio-container {
|
333 |
+
max-width: 900px !important;
|
334 |
+
}
|
335 |
+
.chat-message {
|
336 |
+
font-size: 14px !important;
|
337 |
+
}
|
338 |
+
"""
|
339 |
+
) as interface:
|
340 |
+
|
341 |
+
gr.Markdown(
|
342 |
+
"""
|
343 |
+
# π― Interview Prep Assistant
|
344 |
+
|
345 |
+
Your AI-powered interview preparation companion! I can help you with:
|
346 |
+
|
347 |
+
- **Daily Coding Questions** - Get LeetCode problems for practice
|
348 |
+
- **Mock Interviews** - Practice HR/behavioral or technical interviews
|
349 |
+
- **Interview Questions** - Search for specific topic-based interview questions
|
350 |
+
|
351 |
+
Just type your request below and I'll help you prepare for your next interview!
|
352 |
+
"""
|
353 |
+
)
|
354 |
+
|
355 |
+
# Create the chat interface
|
356 |
+
chatbot = gr.ChatInterface(
|
357 |
+
fn=chat_interface,
|
358 |
+
title="Chat with Interview Prep Assistant",
|
359 |
+
description="Ask me for coding questions, mock interviews, or interview preparation resources!",
|
360 |
+
examples=create_examples(),
|
361 |
+
textbox=gr.Textbox(
|
362 |
+
placeholder="Type your message here... (e.g., 'Give me a daily coding question')",
|
363 |
+
container=False,
|
364 |
+
scale=7
|
365 |
+
),
|
366 |
+
chatbot=gr.Chatbot(
|
367 |
+
height=500,
|
368 |
+
show_label=False,
|
369 |
+
container=True
|
370 |
+
)
|
371 |
+
)
|
372 |
+
|
373 |
+
# Add footer with information
|
374 |
+
gr.Markdown(
|
375 |
+
"""
|
376 |
+
---
|
377 |
+
### π‘ Tips for using the Interview Prep Assistant:
|
378 |
+
|
379 |
+
- **For coding practice**: "daily coding question", "easy coding problem", "leetcode problem 1"
|
380 |
+
- **For mock interviews**: "mock interview", "HR interview", "technical interview"
|
381 |
+
- **For topic research**: "Python interview questions", "system design interview questions"
|
382 |
+
|
383 |
+
### π System Status:
|
384 |
+
- Google API: β
Configured
|
385 |
+
- LeetCode Problems: {} loaded
|
386 |
+
- Tavily Search: {} Available
|
387 |
+
""".format(
|
388 |
+
len(LEETCODE_DATA),
|
389 |
+
"β
" if TAVILY_API_KEY else "β"
|
390 |
+
)
|
391 |
+
)
|
392 |
+
|
393 |
+
# Launch the interface
|
394 |
+
if __name__ == "__main__":
|
395 |
+
interface.launch(
|
396 |
+
# server_name="0.0.0.0",
|
397 |
+
server_port=8000,
|
398 |
+
share=False,
|
399 |
+
show_error=True,
|
400 |
+
quiet=False
|
401 |
+
)
|