Spaces:
Sleeping
Sleeping
n0v33n
commited on
Commit
Β·
ddbcbee
1
Parent(s):
11a2bf7
Updated app.py and gradioapp.py
Browse files- Note.txt +6 -0
- app.py +412 -283
- gradioapp.py +246 -346
Note.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Download The excel Sheet done
|
2 |
+
Remove expection Block for Download done
|
3 |
+
|
4 |
+
in mock interview ask tech stack and then run tailvy search
|
5 |
+
|
6 |
+
make it conversational and save history(previous query) in output list
|
app.py
CHANGED
@@ -3,339 +3,468 @@ import os
|
|
3 |
import re
|
4 |
import pandas as pd
|
5 |
import random
|
6 |
-
import
|
7 |
from fastapi import FastAPI, HTTPException
|
8 |
from pydantic import BaseModel
|
9 |
from dotenv import load_dotenv
|
10 |
from langchain_tavily import TavilySearch
|
11 |
import google.generativeai as genai
|
12 |
-
import gdown
|
13 |
-
|
14 |
-
warnings.filterwarnings("ignore")
|
15 |
|
|
|
16 |
load_dotenv()
|
17 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
18 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
19 |
|
20 |
-
|
21 |
-
if not GOOGLE_API_KEY:
|
22 |
-
raise ValueError("GOOGLE_API_KEY environment variable is required.")
|
23 |
-
|
24 |
genai.configure(api_key=GOOGLE_API_KEY)
|
25 |
|
26 |
-
#
|
27 |
OUTPUT_FILE = "leetcode_downloaded.xlsx"
|
28 |
-
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1KK9Mnm15hV3ALJo-quJndftWfaujJ7K2_zHMCTo5mGE/"
|
29 |
-
FILE_ID = GOOGLE_SHEET_URL.split("/d/")[1].split("/")[0]
|
30 |
-
DOWNLOAD_URL = f"https://drive.google.com/uc?export=download&id={FILE_ID}"
|
31 |
-
|
32 |
try:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
print("Downloading LeetCode data...")
|
39 |
-
gdown.download(DOWNLOAD_URL, OUTPUT_FILE, quiet=False)
|
40 |
-
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
|
41 |
-
print(f"Loaded {len(LEETCODE_DATA)} problems")
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Failed to load or download LeetCode data: {str(e)}")
|
44 |
-
print("Using fallback dataset.")
|
45 |
-
LEETCODE_DATA = pd.DataFrame([
|
46 |
-
{"problem_no": 3151, "problem_level": "Easy", "problem_statement": "special array",
|
47 |
-
"problem_link": "https://leetcode.com/problems/special-array-i/?envType=daily-question&envId=2025-06-01"},
|
48 |
-
{"problem_no": 1752, "problem_level": "Easy", "problem_statement": "check if array is sorted and rotated",
|
49 |
-
"problem_link": "https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/?envType=daily-question&envId=2025-06-01"},
|
50 |
-
{"problem_no": 3105, "problem_level": "Easy", "problem_statement": "longest strictly increasing or strictly decreasing subarray",
|
51 |
-
"problem_link": "https://leetcode.com/problems/longest-strictly-increasing-or-strictly-decreasing-subarray/?envType=daily-question&envId=2025-06-01"},
|
52 |
-
{"problem_no": 1, "problem_level": "Easy", "problem_statement": "two sum",
|
53 |
-
"problem_link": "https://leetcode.com/problems/two-sum/"},
|
54 |
-
{"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers",
|
55 |
-
"problem_link": "https://leetcode.com/problems/add-two-numbers/"},
|
56 |
-
{"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters",
|
57 |
-
"problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"},
|
58 |
-
{"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays",
|
59 |
-
"problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"},
|
60 |
-
{"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring",
|
61 |
-
"problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"}
|
62 |
-
])
|
63 |
-
|
64 |
-
# βββ Helpers & Tools ββββββββββββββββββββββββββββββββββββββββββ
|
65 |
-
|
66 |
-
QUESTION_TYPE_MAPPING = {
|
67 |
-
"easy": "Easy", "Easy": "Easy",
|
68 |
-
"medium": "Medium", "Medium": "Medium",
|
69 |
-
"hard": "Hard", "Hard": "Hard"
|
70 |
-
}
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
def preprocess_query(query: str) -> str:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
return {"status": "success", "response": response}
|
97 |
-
else:
|
98 |
-
return {"status": "error", "response": "Problem not found"}
|
99 |
-
|
100 |
-
if query.strip():
|
101 |
-
df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)]
|
102 |
else:
|
103 |
-
|
104 |
-
|
105 |
-
easy_questions = df[df['problem_level'] == 'Easy'].sample(min(3, len(df[df['problem_level'] == 'Easy'])))
|
106 |
-
medium_questions = df[df['problem_level'] == 'Medium'].sample(min(1, len(df[df['problem_level'] == 'Medium'])))
|
107 |
-
hard_questions = df[df['problem_level'] == 'Hard'].sample(min(1, len(df[df['problem_level'] == 'Hard'])))
|
108 |
-
|
109 |
-
response += "**Easy Questions**\n"
|
110 |
-
for i, p in enumerate(easy_questions.itertuples(), 1):
|
111 |
-
response += (
|
112 |
-
f"{i}. Problem {p.problem_no}: {p.problem_statement}\n"
|
113 |
-
f" Level: {p.problem_level}\n"
|
114 |
-
f" Link: {p.problem_link}\n\n"
|
115 |
-
)
|
116 |
-
|
117 |
-
response += "**Medium Question**\n"
|
118 |
-
for p in medium_questions.itertuples():
|
119 |
-
response += (
|
120 |
-
f"Problem {p.problem_no}: {p.problem_statement}\n"
|
121 |
-
f"Level: {p.problem_level}\n"
|
122 |
-
f"Link: {p.problem_link}\n\n"
|
123 |
-
)
|
124 |
-
|
125 |
-
response += "**Hard Question**\n"
|
126 |
-
for p in hard_questions.itertuples():
|
127 |
-
response += (
|
128 |
-
f"Problem {p.problem_no}: {p.problem_statement}\n"
|
129 |
-
f"Level: {p.problem_level}\n"
|
130 |
-
f"Link: {p.problem_link}\n"
|
131 |
-
)
|
132 |
-
|
133 |
-
return {"status": "success", "response": response}
|
134 |
-
except Exception as e:
|
135 |
-
return {"status": "error", "response": f"Error: {e}"}
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
if not TAVILY_API_KEY:
|
139 |
-
return {"status": "error", "response": "Tavily API key not configured"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
return {"status": "error", "response": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
try:
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
except Exception as e:
|
169 |
-
|
170 |
-
return {"status": "error", "response": f"Search failed: {str(e)}"}
|
171 |
|
172 |
-
def
|
173 |
-
|
174 |
-
if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR"
|
175 |
-
if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical"
|
176 |
-
|
177 |
-
if "interview question" in query.lower() and qtype == "mixed":
|
178 |
-
qtype = "HR"
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
)
|
202 |
-
|
203 |
-
|
|
|
204 |
return {"status": "success", "response": (
|
205 |
-
|
206 |
-
f"**
|
207 |
-
f"-
|
208 |
-
f"-
|
209 |
-
f"-
|
|
|
|
|
210 |
)}
|
|
|
|
|
|
|
211 |
|
212 |
-
# βββ
|
213 |
-
|
214 |
class InterviewPrepAgent:
|
215 |
def __init__(self):
|
216 |
-
|
|
|
|
|
|
|
217 |
self.tools = {
|
218 |
"get_daily_coding_question": get_daily_coding_question,
|
219 |
"fetch_interview_questions": fetch_interview_questions,
|
220 |
"simulate_mock_interview": simulate_mock_interview
|
221 |
}
|
222 |
-
self.instruction_text = """
|
223 |
-
You are an interview preparation assistant. Analyze the user's query and determine which tool to use.
|
224 |
-
|
225 |
-
Available tools:
|
226 |
-
1. get_daily_coding_question - For coding practice, LeetCode problems, daily questions
|
227 |
-
2. fetch_interview_questions - For searching interview questions on specific topics
|
228 |
-
3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical)
|
229 |
-
|
230 |
-
Instructions:
|
231 |
-
- If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question
|
232 |
-
- If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions
|
233 |
-
- If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview
|
234 |
-
- If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus
|
235 |
-
|
236 |
-
Respond ONLY with valid JSON in this exact format:
|
237 |
-
{"tool": "tool_name", "args": {"param1": "value1", "param2": "value2"}}
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
# Handle mock interview or simulation requests
|
250 |
-
if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]):
|
251 |
-
return "simulate_mock_interview", {"query": query, "user_id": "default"}
|
252 |
-
|
253 |
-
# Handle coding-related queries
|
254 |
-
if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]):
|
255 |
-
problem_match = re.search(r'problem\s*(\d+)', query_lower)
|
256 |
-
if problem_match:
|
257 |
-
return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"}
|
258 |
-
|
259 |
-
if "easy" in query_lower:
|
260 |
-
return "get_daily_coding_question", {"query": "Easy"}
|
261 |
-
elif "medium" in query_lower:
|
262 |
-
return "get_daily_coding_question", {"query": "Medium"}
|
263 |
-
elif "hard" in query_lower:
|
264 |
-
return "get_daily_coding_question", {"query": "Hard"}
|
265 |
-
|
266 |
-
return "get_daily_coding_question", {"query": ""}
|
267 |
-
|
268 |
-
# Handle topic-specific interview questions
|
269 |
-
if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \
|
270 |
-
"interview" in query_lower:
|
271 |
-
return "fetch_interview_questions", {"query": query}
|
272 |
|
273 |
-
# Fallback to LLM classification
|
274 |
try:
|
275 |
-
prompt =
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
except Exception as e:
|
282 |
-
|
283 |
-
return "
|
284 |
|
285 |
-
def process_query(self, query
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
session_key = f"{user_id}_{session_id}"
|
290 |
-
user_sessions.setdefault(session_key, {"history": []})
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
return f"I couldn't understand your request. Please try asking for:\n- Daily coding question\n- Mock interview\n- Interview questions for a specific topic"
|
297 |
-
|
298 |
-
result = self.tools[tool_name](**args)
|
299 |
-
|
300 |
-
user_sessions[session_key]["history"].append({
|
301 |
-
"query": query,
|
302 |
-
"response": result["response"]
|
303 |
-
})
|
304 |
|
305 |
-
return result
|
306 |
|
307 |
-
# βββ FastAPI
|
|
|
308 |
|
309 |
-
|
310 |
agent = InterviewPrepAgent()
|
311 |
|
312 |
-
class ChatRequest(BaseModel):
|
313 |
-
user_id: str
|
314 |
-
session_id: str
|
315 |
-
question: str
|
316 |
-
|
317 |
-
class ChatResponse(BaseModel):
|
318 |
-
session_id: str
|
319 |
-
answer: str
|
320 |
-
|
321 |
@app.post("/chat", response_model=ChatResponse)
|
322 |
-
async def chat(
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
@app.get("/")
|
336 |
-
def root():
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
if __name__ == "__main__":
|
340 |
import uvicorn
|
341 |
-
|
|
|
|
|
|
|
|
|
|
3 |
import re
|
4 |
import pandas as pd
|
5 |
import random
|
6 |
+
from typing import Dict, Optional, Any
|
7 |
from fastapi import FastAPI, HTTPException
|
8 |
from pydantic import BaseModel
|
9 |
from dotenv import load_dotenv
|
10 |
from langchain_tavily import TavilySearch
|
11 |
import google.generativeai as genai
|
|
|
|
|
|
|
12 |
|
13 |
+
# Load environment variables
|
14 |
load_dotenv()
|
15 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
16 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
17 |
|
18 |
+
# Configure Google AI
|
|
|
|
|
|
|
19 |
genai.configure(api_key=GOOGLE_API_KEY)
|
20 |
|
21 |
+
# Load LeetCode data
|
22 |
OUTPUT_FILE = "leetcode_downloaded.xlsx"
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
+
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
|
25 |
+
print(f"Loaded {len(LEETCODE_DATA)} LeetCode problems from local file.")
|
26 |
+
except FileNotFoundError:
|
27 |
+
print("Warning: LeetCode data file not found. Some features may not work.")
|
28 |
+
LEETCODE_DATA = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# User sessions for mock interviews
|
31 |
+
user_sessions = {}
|
32 |
+
|
33 |
+
# βββ Pydantic Models ββββββββββββββββββββββββββββββββββββββββββ
|
34 |
+
class ChatRequest(BaseModel):
|
35 |
+
user_id: str = "default"
|
36 |
+
session_id: str = "default"
|
37 |
+
message: str
|
38 |
+
|
39 |
+
class ChatResponse(BaseModel):
|
40 |
+
status: str
|
41 |
+
response: str
|
42 |
+
session_id: str
|
43 |
+
|
44 |
+
class HealthResponse(BaseModel):
|
45 |
+
status: str
|
46 |
+
google_api_configured: bool
|
47 |
+
leetcode_problems_loaded: int
|
48 |
+
tavily_search_available: bool
|
49 |
+
|
50 |
+
# βββ Utility Functions ββββββββββββββββββββββββββββββββββββββββββ
|
51 |
def preprocess_query(query: str) -> str:
|
52 |
+
"""Preprocess user query for better understanding"""
|
53 |
+
return query.strip()
|
54 |
+
|
55 |
+
# βββ Tool 1: Get Daily Coding Question ββββββββββββββββββββββββββ
|
56 |
+
def get_daily_coding_question(query=""):
|
57 |
+
"""Get 3 random coding questions (one from each difficulty level)"""
|
58 |
+
if LEETCODE_DATA.empty:
|
59 |
+
return {"status": "error", "response": "LeetCode data not available. Please check the data file."}
|
60 |
+
|
61 |
+
response = "Here are your coding challenges for today:\n\n"
|
62 |
+
|
63 |
+
problem_match = re.search(r'problem[\s_]*(\d+)', query, re.IGNORECASE)
|
64 |
+
if problem_match:
|
65 |
+
problem_no = int(problem_match.group(1))
|
66 |
+
specific_problem = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == problem_no]
|
67 |
+
if not specific_problem.empty:
|
68 |
+
p = specific_problem.iloc[0]
|
69 |
+
response = f"**Problem {p['problem_no']}: {p['problem_statement']}**\n"
|
70 |
+
response += f"**Difficulty**: {p['problem_level']}\n"
|
71 |
+
response += f"**Link**: {p['problem_link']}\n\n"
|
72 |
+
response += "Good luck with this problem!"
|
73 |
+
return {"status": "success", "response": response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
+
return {"status": "error", "response": "Problem not found. Try a different number!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
easy = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Easy']
|
78 |
+
medium = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Medium']
|
79 |
+
hard = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Hard']
|
80 |
+
|
81 |
+
for label, df in [("π’ Easy", easy), ("π‘ Medium", medium), ("π΄ Hard", hard)]:
|
82 |
+
if not df.empty:
|
83 |
+
q = df.sample(1).iloc[0]
|
84 |
+
response += f"**{label} Challenge**\n"
|
85 |
+
response += f"Problem {q['problem_no']}: {q['problem_statement']}\n"
|
86 |
+
response += f"Link: {q['problem_link']}\n\n"
|
87 |
+
|
88 |
+
response += "Choose one that matches your skill level and start coding!"
|
89 |
+
return {"status": "success", "response": response}
|
90 |
+
|
91 |
+
# βββ Tool 2: Fetch Interview Questions ββββββββββββββββββββββββββ
|
92 |
+
def fetch_interview_questions(query):
|
93 |
if not TAVILY_API_KEY:
|
94 |
+
return {"status": "error", "response": "Tavily API key not configured."}
|
95 |
+
|
96 |
+
try:
|
97 |
+
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=3)
|
98 |
+
search_response = tavily.invoke(f"{query} interview questions")
|
99 |
+
|
100 |
+
# Extract the results list from the response dictionary
|
101 |
+
results = search_response.get("results", []) if isinstance(search_response, dict) else search_response
|
102 |
+
|
103 |
+
if not results:
|
104 |
+
return {"status": "success", "response": f"No results found for '{query}' interview questions."}
|
105 |
+
|
106 |
+
search_results = f"Here are the top 3 resources for {query} interview questions:\n\n"
|
107 |
+
for i, res in enumerate(results[:3], 1):
|
108 |
+
t = res.get('title', 'No title')
|
109 |
+
u = res.get('url', 'No URL')
|
110 |
+
c = res.get('content', '')
|
111 |
+
snippet = c[:200] + '...' if len(c) > 200 else c
|
112 |
+
search_results += f"**{i}. {t}**\nURL: {u}\nPreview: {snippet}\n\n"
|
113 |
+
|
114 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
115 |
+
guidance = model.generate_content(f"""
|
116 |
+
Based on the topic '{query}', provide practical advice on how to prepare for and tackle interview questions in this area.
|
117 |
+
Include:
|
118 |
+
1. Key concepts to focus on
|
119 |
+
2. Common question types
|
120 |
+
3. How to structure answers
|
121 |
+
4. Tips for success
|
122 |
+
|
123 |
+
Keep it concise and actionable.
|
124 |
+
""").text
|
125 |
+
|
126 |
+
final = search_results + "\n**π‘ How to Tackle These Interviews:**\n\n" + guidance
|
127 |
+
return {"status": "success", "response": final}
|
128 |
|
129 |
+
except Exception as e:
|
130 |
+
return {"status": "error", "response": f"Error fetching interview questions: {str(e)}"}
|
131 |
+
|
132 |
+
# βββ Tool 3: Simulate Mock Interview ββββββββββββββββββββββββββ
|
133 |
+
def simulate_mock_interview(query, user_id="default", session_id="default"):
|
134 |
+
session_key = f"mock_{user_id}_{session_id}"
|
135 |
+
if session_key not in user_sessions:
|
136 |
+
user_sessions[session_key] = {
|
137 |
+
"stage": "tech_stack",
|
138 |
+
"tech_stack": "",
|
139 |
+
"questions_asked": [],
|
140 |
+
"answers_given": [],
|
141 |
+
"current_question": "",
|
142 |
+
"question_count": 0,
|
143 |
+
"difficulty": "medium",
|
144 |
+
"feedback_history": []
|
145 |
+
}
|
146 |
+
session = user_sessions[session_key]
|
147 |
|
148 |
try:
|
149 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
150 |
+
|
151 |
+
# Tech stack collection stage
|
152 |
+
if session["stage"] == "tech_stack":
|
153 |
+
session["stage"] = "waiting_tech_stack"
|
154 |
+
return {"status": "success", "response": (
|
155 |
+
"Welcome to your mock interview! π―\n\n"
|
156 |
+
"Please tell me about your tech stack (e.g., Python, React, multi-agent systems) "
|
157 |
+
"or the role you're preparing for (e.g., software engineer, ML engineer)."
|
158 |
+
)}
|
159 |
+
|
160 |
+
elif session["stage"] == "waiting_tech_stack":
|
161 |
+
session["tech_stack"] = query
|
162 |
+
session["stage"] = "interviewing"
|
163 |
+
difficulty_options = " (easy/medium/hard)"
|
164 |
+
q = model.generate_content(f"""
|
165 |
+
Generate a relevant interview question for tech stack: {query}
|
166 |
+
Ensure it tests technical knowledge and problem-solving.
|
167 |
+
Keep it concise and return only the question.
|
168 |
+
""").text.strip()
|
169 |
+
|
170 |
+
session.update({
|
171 |
+
"current_question": q,
|
172 |
+
"questions_asked": [q],
|
173 |
+
"question_count": 1
|
174 |
+
})
|
175 |
+
|
176 |
+
return {"status": "success", "response": (
|
177 |
+
f"Great! Based on your tech stack ({query}), let's start your mock interview.\n\n"
|
178 |
+
f"**Question 1:** {q}\n"
|
179 |
+
f"Set difficulty level{difficulty_options} or proceed. Type 'quit' to end and get your summary."
|
180 |
+
)}
|
181 |
+
|
182 |
+
elif session["stage"] == "interviewing":
|
183 |
+
if query.lower().strip() in ["easy", "medium", "hard"]:
|
184 |
+
session["difficulty"] = query.lower().strip()
|
185 |
+
return {"status": "success", "response": (
|
186 |
+
f"Difficulty set to {session['difficulty']}. Let's continue!\n\n"
|
187 |
+
f"**Question {session['question_count']}:** {session['current_question']}\n\n"
|
188 |
+
"Take your time to answer. Type 'quit' to end and get your summary."
|
189 |
+
)}
|
190 |
+
|
191 |
+
if query.lower().strip() == "quit":
|
192 |
+
return end_mock_interview(session_key)
|
193 |
+
|
194 |
+
# Store answer and provide feedback
|
195 |
+
session["answers_given"].append(query)
|
196 |
+
feedback = model.generate_content(f"""
|
197 |
+
Question: {session['current_question']}
|
198 |
+
Answer: {query}
|
199 |
+
Tech Stack: {session['tech_stack']}
|
200 |
+
Difficulty: {session['difficulty']}
|
201 |
+
|
202 |
+
Provide concise, constructive feedback:
|
203 |
+
- What went well
|
204 |
+
- Areas to improve
|
205 |
+
- Missing points or better approach
|
206 |
+
- Suggested follow-up topic
|
207 |
+
""").text.strip()
|
208 |
+
session["feedback_history"].append(feedback)
|
209 |
+
|
210 |
+
# Generate next question with context
|
211 |
+
next_q = model.generate_content(f"""
|
212 |
+
Tech stack: {session['tech_stack']}
|
213 |
+
Difficulty: {session['difficulty']}
|
214 |
+
Previous questions: {session['questions_asked']}
|
215 |
+
Follow-up topic suggestion: {feedback.split('\n')[-1] if feedback else ''}
|
216 |
+
|
217 |
+
Generate a new, relevant interview question unseen before.
|
218 |
+
Ensure it aligns with the tech stack and difficulty.
|
219 |
+
Return only the question.
|
220 |
+
""").text.strip()
|
221 |
+
|
222 |
+
session["questions_asked"].append(next_q)
|
223 |
+
session["current_question"] = next_q
|
224 |
+
session["question_count"] += 1
|
225 |
+
|
226 |
+
return {"status": "success", "response": (
|
227 |
+
f"**Feedback on your previous answer:**\n{feedback}\n\n"
|
228 |
+
f"**Question {session['question_count']}:** {next_q}\n\n"
|
229 |
+
"Type 'quit' to end the interview and get your summary, or set a new difficulty (easy/medium/hard)."
|
230 |
+
)}
|
231 |
|
232 |
except Exception as e:
|
233 |
+
return {"status": "error", "response": f"Error in mock interview: {str(e)}"}
|
|
|
234 |
|
235 |
+
def end_mock_interview(session_key):
|
236 |
+
session = user_sessions[session_key]
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
try:
|
239 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
240 |
+
|
241 |
+
summary = model.generate_content(f"""
|
242 |
+
Mock Interview Summary:
|
243 |
+
Tech Stack: {session['tech_stack']}
|
244 |
+
Difficulty: {session['difficulty']}
|
245 |
+
Questions Asked: {session['questions_asked']}
|
246 |
+
Answers Given: {session['answers_given']}
|
247 |
+
Feedback History: {session['feedback_history']}
|
248 |
+
|
249 |
+
Provide a concise overall assessment:
|
250 |
+
- Strengths
|
251 |
+
- Areas for improvement
|
252 |
+
- Key recommendations
|
253 |
+
- Common mistakes to avoid
|
254 |
+
""").text.strip()
|
255 |
+
|
256 |
+
# Store session data before deletion for response
|
257 |
+
tech_stack = session['tech_stack']
|
258 |
+
difficulty = session['difficulty']
|
259 |
+
questions_count = len(session['questions_asked'])
|
260 |
+
|
261 |
+
del user_sessions[session_key]
|
262 |
+
|
263 |
return {"status": "success", "response": (
|
264 |
+
"π― **Mock Interview Complete!**\n\n"
|
265 |
+
f"**Interview Summary:**\n"
|
266 |
+
f"- Tech Stack: {tech_stack}\n"
|
267 |
+
f"- Difficulty: {difficulty}\n"
|
268 |
+
f"- Questions Asked: {questions_count}\n\n"
|
269 |
+
"**Overall Assessment:**\n" + summary + "\n\n"
|
270 |
+
"Great jobβuse this feedback to level up! πͺ"
|
271 |
)}
|
272 |
+
|
273 |
+
except Exception as e:
|
274 |
+
return {"status": "error", "response": f"Error generating interview summary: {str(e)}"}
|
275 |
|
276 |
+
# βββ Main Agent Class ββββββββββββββββββββββββββββββββββββββββββ
|
|
|
277 |
class InterviewPrepAgent:
|
278 |
def __init__(self):
|
279 |
+
if GOOGLE_API_KEY:
|
280 |
+
self.model = genai.GenerativeModel('gemini-1.5-flash')
|
281 |
+
else:
|
282 |
+
self.model = None
|
283 |
self.tools = {
|
284 |
"get_daily_coding_question": get_daily_coding_question,
|
285 |
"fetch_interview_questions": fetch_interview_questions,
|
286 |
"simulate_mock_interview": simulate_mock_interview
|
287 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
def classify_query(self, query):
|
290 |
+
if not self.model:
|
291 |
+
# Fallback classification without AI
|
292 |
+
query_lower = query.lower()
|
293 |
+
if any(keyword in query_lower for keyword in ['mock', 'interview', 'simulate', 'practice']):
|
294 |
+
return "simulate_mock_interview", {"query": query}
|
295 |
+
elif any(keyword in query_lower for keyword in ['coding', 'leetcode', 'daily', 'problem']):
|
296 |
+
return "get_daily_coding_question", {"query": query}
|
297 |
+
else:
|
298 |
+
return "fetch_interview_questions", {"query": query}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
|
|
300 |
try:
|
301 |
+
prompt = f"""
|
302 |
+
Analyze this user query and determine which tool to use:
|
303 |
+
|
304 |
+
Query: "{query}"
|
305 |
+
|
306 |
+
Tools:
|
307 |
+
1. get_daily_coding_question β for coding problems, leetcode, daily challenges
|
308 |
+
2. fetch_interview_questions β for topic-specific interview question resources
|
309 |
+
3. simulate_mock_interview β for mock interview practice or behavioral interviews
|
310 |
+
|
311 |
+
Rules:
|
312 |
+
- If query mentions 'mock', 'interview', 'simulate', or 'practice', choose simulate_mock_interview
|
313 |
+
- If query mentions 'coding', 'leetcode', 'daily', 'problem', choose get_daily_coding_question
|
314 |
+
- If query asks for interview questions on a specific technology (like 'Python interview questions'), choose fetch_interview_questions
|
315 |
+
- If unclear, default to simulate_mock_interview
|
316 |
+
|
317 |
+
Respond with JSON: {{"tool": "tool_name", "args": {{"query": "query_text"}}}}
|
318 |
+
"""
|
319 |
+
resp = self.model.generate_content(prompt).text.strip()
|
320 |
+
if resp.startswith("```json"):
|
321 |
+
resp = resp.replace("```json", "").replace("```", "").strip()
|
322 |
+
j = json.loads(resp)
|
323 |
+
return j.get("tool"), j.get("args", {})
|
324 |
except Exception as e:
|
325 |
+
# Fallback to simple classification
|
326 |
+
return "simulate_mock_interview", {"query": query}
|
327 |
|
328 |
+
def process_query(self, query, user_id="default", session_id="default"):
|
329 |
+
tool, args = self.classify_query(query)
|
330 |
+
if tool not in self.tools:
|
331 |
+
return {"status": "error", "response": "Sorry, I didn't get that. Ask for coding practice, interview questions, or mock interview!"}
|
|
|
|
|
332 |
|
333 |
+
if tool == "simulate_mock_interview":
|
334 |
+
result = self.tools[tool](args.get("query", query), user_id, session_id)
|
335 |
+
else:
|
336 |
+
result = self.tools[tool](args.get("query", query))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
return result.get("response", "Something went wrong, try again.")
|
339 |
|
340 |
+
# βββ FastAPI Application ββββββββββββββββββββββββββββββββββββββ
|
341 |
+
app = FastAPI(title="Interview Prep API", version="2.0.0", description="AI-powered interview practice companion")
|
342 |
|
343 |
+
# Initialize the agent
|
344 |
agent = InterviewPrepAgent()
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
@app.post("/chat", response_model=ChatResponse)
|
347 |
+
async def chat(request: ChatRequest):
|
348 |
+
"""
|
349 |
+
Process a chat message and return a response
|
350 |
+
"""
|
351 |
+
try:
|
352 |
+
query = preprocess_query(request.message)
|
353 |
+
response = agent.process_query(query, request.user_id, request.session_id)
|
354 |
+
|
355 |
+
return ChatResponse(
|
356 |
+
status="success",
|
357 |
+
response=response,
|
358 |
+
session_id=request.session_id
|
359 |
+
)
|
360 |
+
except Exception as e:
|
361 |
+
raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")
|
362 |
+
|
363 |
+
@app.get("/health", response_model=HealthResponse)
|
364 |
+
async def health_check():
|
365 |
+
"""
|
366 |
+
Health check endpoint
|
367 |
+
"""
|
368 |
+
return HealthResponse(
|
369 |
+
status="healthy",
|
370 |
+
google_api_configured=bool(GOOGLE_API_KEY),
|
371 |
+
leetcode_problems_loaded=len(LEETCODE_DATA),
|
372 |
+
tavily_search_available=bool(TAVILY_API_KEY)
|
373 |
+
)
|
374 |
|
375 |
@app.get("/")
|
376 |
+
async def root():
|
377 |
+
"""
|
378 |
+
Root endpoint with API information
|
379 |
+
"""
|
380 |
+
return {
|
381 |
+
"message": "Interview Prep API v2.0.0",
|
382 |
+
"description": "AI-powered interview practice companion",
|
383 |
+
"endpoints": {
|
384 |
+
"/chat": "POST - Send chat messages",
|
385 |
+
"/health": "GET - Health check",
|
386 |
+
"/docs": "GET - API documentation",
|
387 |
+
"/examples": "GET - Example requests"
|
388 |
+
}
|
389 |
+
}
|
390 |
+
|
391 |
+
@app.get("/examples")
|
392 |
+
async def get_examples():
|
393 |
+
"""
|
394 |
+
Get example requests for the API
|
395 |
+
"""
|
396 |
+
return {
|
397 |
+
"examples": [
|
398 |
+
{
|
399 |
+
"description": "Get daily coding questions",
|
400 |
+
"request": {
|
401 |
+
"user_id": "user123",
|
402 |
+
"session_id": "session456",
|
403 |
+
"message": "Give me daily coding questions"
|
404 |
+
}
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"description": "Start a mock interview",
|
408 |
+
"request": {
|
409 |
+
"user_id": "user123",
|
410 |
+
"session_id": "session456",
|
411 |
+
"message": "Start a mock interview"
|
412 |
+
}
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"description": "Get Python interview questions",
|
416 |
+
"request": {
|
417 |
+
"user_id": "user123",
|
418 |
+
"session_id": "session456",
|
419 |
+
"message": "Python interview questions"
|
420 |
+
}
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"description": "Get specific LeetCode problem",
|
424 |
+
"request": {
|
425 |
+
"user_id": "user123",
|
426 |
+
"session_id": "session456",
|
427 |
+
"message": "Show me problem 1"
|
428 |
+
}
|
429 |
+
}
|
430 |
+
]
|
431 |
+
}
|
432 |
+
|
433 |
+
@app.delete("/session/{user_id}/{session_id}")
|
434 |
+
async def clear_session(user_id: str, session_id: str):
|
435 |
+
"""
|
436 |
+
Clear a specific user session
|
437 |
+
"""
|
438 |
+
session_key = f"mock_{user_id}_{session_id}"
|
439 |
+
if session_key in user_sessions:
|
440 |
+
del user_sessions[session_key]
|
441 |
+
return {"message": f"Session {session_id} for user {user_id} cleared successfully"}
|
442 |
+
else:
|
443 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
444 |
+
|
445 |
+
@app.get("/sessions/{user_id}")
|
446 |
+
async def get_user_sessions(user_id: str):
|
447 |
+
"""
|
448 |
+
Get all sessions for a specific user
|
449 |
+
"""
|
450 |
+
user_session_keys = [key for key in user_sessions.keys() if key.startswith(f"mock_{user_id}_")]
|
451 |
+
sessions = []
|
452 |
+
for key in user_session_keys:
|
453 |
+
session_id = key.split("_")[-1]
|
454 |
+
session_data = user_sessions[key]
|
455 |
+
sessions.append({
|
456 |
+
"session_id": session_id,
|
457 |
+
"stage": session_data.get("stage"),
|
458 |
+
"tech_stack": session_data.get("tech_stack"),
|
459 |
+
"question_count": session_data.get("question_count", 0),
|
460 |
+
"difficulty": session_data.get("difficulty")
|
461 |
+
})
|
462 |
+
return {"user_id": user_id, "sessions": sessions}
|
463 |
|
464 |
if __name__ == "__main__":
|
465 |
import uvicorn
|
466 |
+
print("Starting Interview Prep FastAPI server...")
|
467 |
+
print(f"Google API configured: {bool(GOOGLE_API_KEY)}")
|
468 |
+
print(f"LeetCode problems loaded: {len(LEETCODE_DATA)}")
|
469 |
+
print(f"Tavily search available: {bool(TAVILY_API_KEY)}")
|
470 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
gradioapp.py
CHANGED
@@ -3,207 +3,228 @@ import os
|
|
3 |
import re
|
4 |
import pandas as pd
|
5 |
import random
|
6 |
-
import warnings
|
7 |
from dotenv import load_dotenv
|
8 |
from langchain_tavily import TavilySearch
|
9 |
import google.generativeai as genai
|
10 |
-
import gdown
|
11 |
import gradio as gr
|
12 |
|
13 |
-
warnings.filterwarnings("ignore")
|
14 |
-
|
15 |
load_dotenv()
|
16 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
17 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
raise ValueError("GOOGLE_API_KEY environment variable is required.")
|
22 |
|
23 |
genai.configure(api_key=GOOGLE_API_KEY)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
"problem_link": "https://leetcode.com/problems/two-sum/"},
|
47 |
-
{"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers",
|
48 |
-
"problem_link": "https://leetcode.com/problems/add-two-numbers/"},
|
49 |
-
{"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters",
|
50 |
-
"problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"},
|
51 |
-
{"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays",
|
52 |
-
"problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"},
|
53 |
-
{"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring",
|
54 |
-
"problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"}
|
55 |
-
])
|
56 |
-
|
57 |
-
# βββ Helpers & Tools ββββββββββββββββββββββββββββββββββββββββββ
|
58 |
-
|
59 |
-
QUESTION_TYPE_MAPPING = {
|
60 |
-
"easy": "Easy", "Easy": "Easy",
|
61 |
-
"medium": "Medium", "Medium": "Medium",
|
62 |
-
"hard": "Hard", "Hard": "Hard"
|
63 |
-
}
|
64 |
-
|
65 |
-
def preprocess_query(query: str) -> str:
|
66 |
-
for k, v in QUESTION_TYPE_MAPPING.items():
|
67 |
-
query = re.sub(rf'\b{k}\b', v, query, flags=re.IGNORECASE)
|
68 |
-
query = re.sub(r'\bproblem\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
|
69 |
-
query = re.sub(r'\bquestion\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
|
70 |
-
query = re.sub(r'\b(find|search)\s+interview\s+questions\s+for\s+', '', query, flags=re.IGNORECASE)
|
71 |
-
query = re.sub(r'\binterview\s+questions\b', '', query, flags=re.IGNORECASE).strip()
|
72 |
-
return query
|
73 |
-
|
74 |
-
def get_daily_coding_question(query: str = "") -> dict:
|
75 |
-
try:
|
76 |
-
response = "**Daily Coding Questions**\n\n"
|
77 |
-
|
78 |
-
m = re.search(r'Problem_(\d+)', query, re.IGNORECASE)
|
79 |
-
if m:
|
80 |
-
df = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == int(m.group(1))]
|
81 |
-
if not df.empty:
|
82 |
-
p = df.iloc[0]
|
83 |
-
response += (
|
84 |
-
f"**Problem {p['problem_no']}**\n"
|
85 |
-
f"Level: {p['problem_level']}\n"
|
86 |
-
f"Statement: {p['problem_statement']}\n"
|
87 |
-
f"Link: {p['problem_link']}\n\n"
|
88 |
-
)
|
89 |
-
return {"status": "success", "response": response}
|
90 |
-
else:
|
91 |
-
return {"status": "error", "response": "Problem not found"}
|
92 |
-
|
93 |
-
if query.strip():
|
94 |
-
df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)]
|
95 |
else:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
f"Level: {p.problem_level}\n"
|
115 |
-
f"Link: {p.problem_link}\n\n"
|
116 |
-
)
|
117 |
-
|
118 |
-
response += "**Hard Question**\n"
|
119 |
-
for p in hard_questions.itertuples():
|
120 |
-
response += (
|
121 |
-
f"Problem {p.problem_no}: {p.problem_statement}\n"
|
122 |
-
f"Level: {p.problem_level}\n"
|
123 |
-
f"Link: {p.problem_link}\n"
|
124 |
-
)
|
125 |
-
|
126 |
-
return {"status": "success", "response": response}
|
127 |
-
except Exception as e:
|
128 |
-
return {"status": "error", "response": f"Error: {e}"}
|
129 |
-
|
130 |
-
def fetch_interview_questions(query: str) -> dict:
|
131 |
if not TAVILY_API_KEY:
|
132 |
-
return {"status": "error", "response": "Tavily API key not configured"}
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
content = r.get('content', '')
|
154 |
-
content = content[:200] + 'β¦' if len(content) > 200 else content or "No preview available"
|
155 |
-
resp += f"{i}. **{title}**\n URL: {url}\n Preview: {content}\n\n"
|
156 |
-
else:
|
157 |
-
resp += f"{i}. {str(r)[:200]}{'β¦' if len(str(r)) > 200 else ''}\n\n"
|
158 |
|
159 |
-
return {"status": "success", "response": resp}
|
160 |
-
|
161 |
-
except Exception as e:
|
162 |
-
print(f"Tavily search failed: {str(e)}")
|
163 |
-
return {"status": "error", "response": f"Search failed: {str(e)}"}
|
164 |
-
|
165 |
-
def simulate_mock_interview(query: str, user_id: str = "default") -> dict:
|
166 |
-
qtype = "mixed"
|
167 |
-
if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR"
|
168 |
-
if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical"
|
169 |
-
|
170 |
-
if "interview question" in query.lower() and qtype == "mixed":
|
171 |
-
qtype = "HR"
|
172 |
-
|
173 |
-
if qtype == "HR":
|
174 |
-
hr_questions = [
|
175 |
-
"Tell me about yourself.",
|
176 |
-
"What is your greatest weakness?",
|
177 |
-
"Describe a challenge you overcame.",
|
178 |
-
"Why do you want to work here?",
|
179 |
-
"Where do you see yourself in 5 years?",
|
180 |
-
"Why are you leaving your current job?",
|
181 |
-
"Describe a time when you had to work with a difficult team member.",
|
182 |
-
"What are your salary expectations?",
|
183 |
-
"Tell me about a time you failed.",
|
184 |
-
"What motivates you?",
|
185 |
-
"How do you handle stress and pressure?",
|
186 |
-
"Describe your leadership style."
|
187 |
-
]
|
188 |
-
q = random.choice(hr_questions)
|
189 |
return {"status": "success", "response": (
|
190 |
-
f"
|
191 |
-
f"
|
192 |
-
f"
|
193 |
-
f"- Keep your answer concise but detailed\n\n**Your turn to answer!**"
|
194 |
)}
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
return {"status": "success", "response": (
|
198 |
-
f"**
|
199 |
-
f"**
|
200 |
-
|
201 |
-
f"- Ask clarifying questions\n"
|
202 |
-
f"- Discuss time/space complexity\n\n**Explain your approach!**"
|
203 |
)}
|
204 |
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
class InterviewPrepAgent:
|
208 |
def __init__(self):
|
209 |
self.model = genai.GenerativeModel('gemini-1.5-flash')
|
@@ -212,190 +233,69 @@ class InterviewPrepAgent:
|
|
212 |
"fetch_interview_questions": fetch_interview_questions,
|
213 |
"simulate_mock_interview": simulate_mock_interview
|
214 |
}
|
215 |
-
self.instruction_text = """
|
216 |
-
You are an interview preparation assistant. Analyze the user's query and determine which tool to use.
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical)
|
222 |
|
223 |
-
|
224 |
-
- If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question
|
225 |
-
- If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions
|
226 |
-
- If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview
|
227 |
-
- If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
"""
|
234 |
-
|
235 |
-
def _classify_intent(self, query: str) -> tuple[str, dict]:
|
236 |
-
query_lower = query.lower()
|
237 |
-
|
238 |
-
# Prioritize HR/behavioral for explicit mentions
|
239 |
-
if any(keyword in query_lower for keyword in ["hr", "behavioral", "give hr questions", "give behavioral questions"]):
|
240 |
-
return "simulate_mock_interview", {"query": query, "user_id": "default"}
|
241 |
-
|
242 |
-
# Handle mock interview or simulation requests
|
243 |
-
if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]):
|
244 |
-
return "simulate_mock_interview", {"query": query, "user_id": "default"}
|
245 |
-
|
246 |
-
# Handle coding-related queries
|
247 |
-
if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]):
|
248 |
-
problem_match = re.search(r'problem\s*(\d+)', query_lower)
|
249 |
-
if problem_match:
|
250 |
-
return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"}
|
251 |
-
|
252 |
-
if "easy" in query_lower:
|
253 |
-
return "get_daily_coding_question", {"query": "Easy"}
|
254 |
-
elif "medium" in query_lower:
|
255 |
-
return "get_daily_coding_question", {"query": "Medium"}
|
256 |
-
elif "hard" in query_lower:
|
257 |
-
return "get_daily_coding_question", {"query": "Hard"}
|
258 |
-
|
259 |
-
return "get_daily_coding_question", {"query": ""}
|
260 |
-
|
261 |
-
# Handle topic-specific interview questions
|
262 |
-
if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \
|
263 |
-
"interview" in query_lower:
|
264 |
-
return "fetch_interview_questions", {"query": query}
|
265 |
-
|
266 |
-
# Fallback to LLM classification
|
267 |
-
try:
|
268 |
-
prompt = self.instruction_text.format(query=query)
|
269 |
-
response = self.model.generate_content(prompt)
|
270 |
-
result = json.loads(response.text.strip())
|
271 |
-
tool_name = result.get("tool")
|
272 |
-
args = result.get("args", {})
|
273 |
-
return tool_name, args
|
274 |
-
except Exception as e:
|
275 |
-
print(f"LLM classification failed: {e}")
|
276 |
-
return "get_daily_coding_question", {"query": ""}
|
277 |
-
|
278 |
-
def process_query(self, query: str, user_id: str = "default", session_id: str = "default") -> str:
|
279 |
-
if not GOOGLE_API_KEY:
|
280 |
-
return "Error: Google API not configured."
|
281 |
-
|
282 |
-
session_key = f"{user_id}_{session_id}"
|
283 |
-
user_sessions.setdefault(session_key, {"history": []})
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
"
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
# βββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββ
|
300 |
-
|
301 |
agent = InterviewPrepAgent()
|
302 |
|
303 |
def chat_interface(message, history):
|
304 |
-
|
305 |
-
try
|
306 |
-
# Preprocess the query
|
307 |
-
processed_query = preprocess_query(message)
|
308 |
-
|
309 |
-
# Get response from agent
|
310 |
-
response = agent.process_query(processed_query, user_id="gradio_user", session_id="session_1")
|
311 |
-
|
312 |
-
return response
|
313 |
-
except Exception as e:
|
314 |
-
return f"Sorry, I encountered an error: {str(e)}"
|
315 |
|
316 |
def create_examples():
|
317 |
-
"""Create example messages for the interface"""
|
318 |
return [
|
319 |
-
["Give me
|
320 |
-
["
|
321 |
-
["
|
322 |
-
["
|
323 |
-
["
|
324 |
-
["
|
325 |
]
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
title="Interview Prep Assistant",
|
330 |
-
theme=gr.themes.Soft(),
|
331 |
-
css="""
|
332 |
-
.gradio-container {
|
333 |
-
max-width: 900px !important;
|
334 |
-
}
|
335 |
-
.chat-message {
|
336 |
-
font-size: 14px !important;
|
337 |
-
}
|
338 |
-
"""
|
339 |
-
) as interface:
|
340 |
-
|
341 |
-
gr.Markdown(
|
342 |
-
"""
|
343 |
-
# π― Interview Prep Assistant
|
344 |
-
|
345 |
-
Your AI-powered interview preparation companion! I can help you with:
|
346 |
-
|
347 |
-
- **Daily Coding Questions** - Get LeetCode problems for practice
|
348 |
-
- **Mock Interviews** - Practice HR/behavioral or technical interviews
|
349 |
-
- **Interview Questions** - Search for specific topic-based interview questions
|
350 |
-
|
351 |
-
Just type your request below and I'll help you prepare for your next interview!
|
352 |
-
"""
|
353 |
-
)
|
354 |
-
|
355 |
-
# Create the chat interface
|
356 |
chatbot = gr.ChatInterface(
|
357 |
fn=chat_interface,
|
358 |
-
title="Chat with Interview Prep Assistant",
|
359 |
-
description="Ask me for coding questions, mock interviews, or interview preparation resources!",
|
360 |
examples=create_examples(),
|
361 |
-
|
362 |
-
|
363 |
-
container=False,
|
364 |
-
scale=7
|
365 |
-
),
|
366 |
-
chatbot=gr.Chatbot(
|
367 |
-
height=500,
|
368 |
-
show_label=False,
|
369 |
-
container=True
|
370 |
-
)
|
371 |
-
)
|
372 |
-
|
373 |
-
# Add footer with information
|
374 |
-
gr.Markdown(
|
375 |
-
"""
|
376 |
-
---
|
377 |
-
### π‘ Tips for using the Interview Prep Assistant:
|
378 |
-
|
379 |
-
- **For coding practice**: "daily coding question", "easy coding problem", "leetcode problem 1"
|
380 |
-
- **For mock interviews**: "mock interview", "HR interview", "technical interview"
|
381 |
-
- **For topic research**: "Python interview questions", "system design interview questions"
|
382 |
-
|
383 |
-
### π System Status:
|
384 |
-
- Google API: β
Configured
|
385 |
-
- LeetCode Problems: {} loaded
|
386 |
-
- Tavily Search: {} Available
|
387 |
-
""".format(
|
388 |
-
len(LEETCODE_DATA),
|
389 |
-
"β
" if TAVILY_API_KEY else "β"
|
390 |
-
)
|
391 |
)
|
|
|
392 |
|
393 |
-
# Launch the interface
|
394 |
if __name__ == "__main__":
|
395 |
-
interface.launch(
|
396 |
-
# server_name="0.0.0.0",
|
397 |
-
server_port=8000,
|
398 |
-
share=False,
|
399 |
-
show_error=True,
|
400 |
-
quiet=False
|
401 |
-
)
|
|
|
3 |
import re
|
4 |
import pandas as pd
|
5 |
import random
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
from langchain_tavily import TavilySearch
|
8 |
import google.generativeai as genai
|
|
|
9 |
import gradio as gr
|
10 |
|
|
|
|
|
11 |
load_dotenv()
|
12 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
13 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
14 |
|
15 |
+
# User sessions for mock interviews
|
16 |
+
# user_sessions = {}
|
|
|
17 |
|
18 |
genai.configure(api_key=GOOGLE_API_KEY)
|
19 |
|
20 |
+
# Load LeetCode data
|
21 |
+
OUTPUT_FILE = "Interview-QA-Practice-Bot/leetcode_downloaded.xlsx"
|
22 |
+
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
|
23 |
+
print(f"Loaded {len(LEETCODE_DATA)} LeetCode problems from local file.")
|
24 |
+
|
25 |
+
# βββ Tool 1: Get Daily Coding Question ββββοΏ½οΏ½βββββββββββββββββββββ
|
26 |
+
def get_daily_coding_question(query=""):
|
27 |
+
"""Get 3 random coding questions (one from each difficulty level)"""
|
28 |
+
response = "Here are your coding challenges for today:\n\n"
|
29 |
+
|
30 |
+
problem_match = re.search(r'problem[\s_]*(\d+)', query, re.IGNORECASE)
|
31 |
+
if problem_match:
|
32 |
+
problem_no = int(problem_match.group(1))
|
33 |
+
specific_problem = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == problem_no]
|
34 |
+
if not specific_problem.empty:
|
35 |
+
p = specific_problem.iloc[0]
|
36 |
+
response = f"**Problem {p['problem_no']}: {p['problem_statement']}**\n"
|
37 |
+
response += f"**Difficulty**: {p['problem_level']}\n"
|
38 |
+
response += f"**Link**: {p['problem_link']}\n\n"
|
39 |
+
response += "Good luck with this problem!"
|
40 |
+
return {"status": "success", "response": response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
else:
|
42 |
+
return {"status": "error", "response": "Problem not found. Try a different number!"}
|
43 |
+
|
44 |
+
easy = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Easy']
|
45 |
+
medium = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Medium']
|
46 |
+
hard = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Hard']
|
47 |
+
|
48 |
+
for label, df in [("π’ Easy", easy), ("π‘ Medium", medium), ("π΄ Hard", hard)]:
|
49 |
+
if not df.empty:
|
50 |
+
q = df.sample(1).iloc[0]
|
51 |
+
response += f"**{label} Challenge**\n"
|
52 |
+
response += f"Problem {q['problem_no']}: {q['problem_statement']}\n"
|
53 |
+
response += f"Link: {q['problem_link']}\n\n"
|
54 |
+
|
55 |
+
response += "Choose one that matches your skill level and start coding!"
|
56 |
+
return {"status": "success", "response": response}
|
57 |
+
|
58 |
+
# βββ Tool 2: Fetch Interview Questions ββββββββββββββββββββββββββ
|
59 |
+
def fetch_interview_questions(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if not TAVILY_API_KEY:
|
61 |
+
return {"status": "error", "response": "Tavily API key not configured."}
|
62 |
+
|
63 |
+
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=3)
|
64 |
+
search_response = tavily.invoke(f"{query} interview questions")
|
65 |
+
|
66 |
+
# Extract the results list from the response dictionary
|
67 |
+
results = search_response.get("results", []) if isinstance(search_response, dict) else search_response
|
68 |
+
|
69 |
+
if not results:
|
70 |
+
return {"status": "success", "response": f"No results found for '{query}' interview questions."}
|
71 |
+
|
72 |
+
search_results = f"Here are the top 3 resources for {query} interview questions:\n\n"
|
73 |
+
for i, res in enumerate(results[:3], 1):
|
74 |
+
t = res.get('title', 'No title')
|
75 |
+
u = res.get('url', 'No URL')
|
76 |
+
c = res.get('content', '')
|
77 |
+
snippet = c[:200] + '...' if len(c) > 200 else c
|
78 |
+
search_results += f"**{i}. {t}**\nURL: {u}\nPreview: {snippet}\n\n"
|
79 |
+
|
80 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
81 |
+
guidance = model.generate_content(f"""
|
82 |
+
Based on the topic '{query}', provide practical advice on how to prepare for and tackle interview questions in this area.
|
83 |
+
Include:
|
84 |
+
1. Key concepts to focus on
|
85 |
+
2. Common question types
|
86 |
+
3. How to structure answers
|
87 |
+
4. Tips for success
|
88 |
+
|
89 |
+
Keep it concise and actionable.
|
90 |
+
""").text
|
91 |
+
|
92 |
+
final = search_results + "\n**π‘ How to Tackle These Interviews:**\n\n" + guidance
|
93 |
+
return {"status": "success", "response": final}
|
94 |
+
|
95 |
+
# βββ Tool 3: Simulate Mock Interview ββββββββββββββββββββββββββ
|
96 |
+
# Enhanced user session management
|
97 |
+
user_sessions = {}
|
98 |
+
|
99 |
+
def simulate_mock_interview(query, user_id="default"):
|
100 |
+
session_key = f"mock_{user_id}"
|
101 |
+
if session_key not in user_sessions:
|
102 |
+
user_sessions[session_key] = {
|
103 |
+
"stage": "tech_stack",
|
104 |
+
"tech_stack": "",
|
105 |
+
"questions_asked": [],
|
106 |
+
"answers_given": [],
|
107 |
+
"current_question": "",
|
108 |
+
"question_count": 0,
|
109 |
+
"difficulty": "medium", # Added difficulty level
|
110 |
+
"feedback_history": [] # Added feedback tracking
|
111 |
+
}
|
112 |
+
session = user_sessions[session_key]
|
113 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
114 |
+
|
115 |
+
# Tech stack collection stage
|
116 |
+
if session["stage"] == "tech_stack":
|
117 |
+
session["stage"] = "waiting_tech_stack"
|
118 |
+
return {"status": "success", "response": (
|
119 |
+
"Welcome to your mock interview! π―\n\n"
|
120 |
+
"Please tell me about your tech stack (e.g., Python, React, multi-agent systems) "
|
121 |
+
"or the role you're preparing for (e.g., software engineer, ML engineer)."
|
122 |
+
)}
|
123 |
+
|
124 |
+
elif session["stage"] == "waiting_tech_stack":
|
125 |
+
session["tech_stack"] = query
|
126 |
+
session["stage"] = "interviewing"
|
127 |
+
difficulty_options = " (easy/medium/hard)"
|
128 |
+
q = model.generate_content(f"""
|
129 |
+
Generate a relevant interview question for tech stack: {query}
|
130 |
+
Ensure it tests technical knowledge and problem-solving.
|
131 |
+
Keep it concise and return only the question.
|
132 |
+
""").text.strip()
|
133 |
|
134 |
+
session.update({
|
135 |
+
"current_question": q,
|
136 |
+
"questions_asked": [q],
|
137 |
+
"question_count": 1
|
138 |
+
})
|
|
|
|
|
|
|
|
|
|
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
return {"status": "success", "response": (
|
141 |
+
f"Great! Based on your tech stack ({query}), let's start your mock interview.\n\n"
|
142 |
+
f"**Question 1:** {q}\n"
|
143 |
+
f"Set difficulty level{difficulty_options} or proceed. Type 'quit' to end and get your summary."
|
|
|
144 |
)}
|
145 |
+
|
146 |
+
elif session["stage"] == "interviewing":
|
147 |
+
if query.lower().strip() in ["easy", "medium", "hard"]:
|
148 |
+
session["difficulty"] = query.lower().strip()
|
149 |
+
return {"status": "success", "response": (
|
150 |
+
f"Difficulty set to {session['difficulty']}. Let's continue!\n\n"
|
151 |
+
f"**Question {session['question_count']}:** {session['current_question']}\n\n"
|
152 |
+
"Take your time to answer. Type 'quit' to end and get your summary."
|
153 |
+
)}
|
154 |
+
|
155 |
+
if query.lower().strip() == "quit":
|
156 |
+
return end_mock_interview(session_key)
|
157 |
+
|
158 |
+
# Store answer and provide feedback
|
159 |
+
session["answers_given"].append(query)
|
160 |
+
feedback = model.generate_content(f"""
|
161 |
+
Question: {session['current_question']}
|
162 |
+
Answer: {query}
|
163 |
+
Tech Stack: {session['tech_stack']}
|
164 |
+
Difficulty: {session['difficulty']}
|
165 |
+
|
166 |
+
Provide concise, constructive feedback:
|
167 |
+
- What went well
|
168 |
+
- Areas to improve
|
169 |
+
- Missing points or better approach
|
170 |
+
- Suggested follow-up topic
|
171 |
+
""").text.strip()
|
172 |
+
session["feedback_history"].append(feedback)
|
173 |
+
|
174 |
+
# Generate next question with context
|
175 |
+
next_q = model.generate_content(f"""
|
176 |
+
Tech stack: {session['tech_stack']}
|
177 |
+
Difficulty: {session['difficulty']}
|
178 |
+
Previous questions: {session['questions_asked']}
|
179 |
+
Follow-up topic suggestion: {feedback.split('\n')[-1] if feedback else ''}
|
180 |
+
|
181 |
+
Generate a new, relevant interview question unseen before.
|
182 |
+
Ensure it aligns with the tech stack and difficulty.
|
183 |
+
Return only the question.
|
184 |
+
""").text.strip()
|
185 |
+
|
186 |
+
session["questions_asked"].append(next_q)
|
187 |
+
session["current_question"] = next_q
|
188 |
+
session["question_count"] += 1
|
189 |
+
|
190 |
return {"status": "success", "response": (
|
191 |
+
f"**Feedback on your previous answer:**\n{feedback}\n\n"
|
192 |
+
f"**Question {session['question_count']}:** {next_q}\n\n"
|
193 |
+
"Type 'quit' to end the interview and get your summary, or set a new difficulty (easy/medium/hard)."
|
|
|
|
|
194 |
)}
|
195 |
|
196 |
+
def end_mock_interview(session_key):
|
197 |
+
session = user_sessions[session_key]
|
198 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
199 |
+
|
200 |
+
summary = model.generate_content(f"""
|
201 |
+
Mock Interview Summary:
|
202 |
+
Tech Stack: {session['tech_stack']}
|
203 |
+
Difficulty: {session['difficulty']}
|
204 |
+
Questions Asked: {session['questions_asked']}
|
205 |
+
Answers Given: {session['answers_given']}
|
206 |
+
Feedback History: {session['feedback_history']}
|
207 |
+
|
208 |
+
Provide a concise overall assessment:
|
209 |
+
- Strengths
|
210 |
+
- Areas for improvement
|
211 |
+
- Key recommendations
|
212 |
+
- Common mistakes to avoid
|
213 |
+
""").text.strip()
|
214 |
+
|
215 |
+
del user_sessions[session_key]
|
216 |
+
|
217 |
+
return {"status": "success", "response": (
|
218 |
+
"π― **Mock Interview Complete!**\n\n"
|
219 |
+
f"**Interview Summary:**\n"
|
220 |
+
f"- Tech Stack: {session['tech_stack']}\n"
|
221 |
+
f"- Difficulty: {session['difficulty']}\n"
|
222 |
+
f"- Questions Asked: {len(session['questions_asked'])}\n\n"
|
223 |
+
"**Overall Assessment:**\n" + summary + "\n\n"
|
224 |
+
"Great jobβuse this feedback to level up! πͺ"
|
225 |
+
)}
|
226 |
+
|
227 |
+
# βββ Main Agent Class ββββββββββββββββββββββββββββββββββββββββββ
|
228 |
class InterviewPrepAgent:
|
229 |
def __init__(self):
|
230 |
self.model = genai.GenerativeModel('gemini-1.5-flash')
|
|
|
233 |
"fetch_interview_questions": fetch_interview_questions,
|
234 |
"simulate_mock_interview": simulate_mock_interview
|
235 |
}
|
|
|
|
|
236 |
|
237 |
+
def classify_query(self, query):
|
238 |
+
prompt = f"""
|
239 |
+
Analyze this user query and determine which tool to use:
|
|
|
240 |
|
241 |
+
Query: "{query}"
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
Tools:
|
244 |
+
1. get_daily_coding_question β for coding problems, leetcode, daily challenges
|
245 |
+
2. fetch_interview_questions β for topic-specific interview question resources
|
246 |
+
3. simulate_mock_interview β for mock interview practice or behavioral interviews
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
Rules:
|
249 |
+
- If query mentions 'mock', 'interview', 'simulate', or 'practice', choose simulate_mock_interview
|
250 |
+
- If query mentions 'coding', 'leetcode', 'daily', 'problem', choose get_daily_coding_question
|
251 |
+
- If query asks for interview questions on a specific technology (like 'Python interview questions'), choose fetch_interview_questions
|
252 |
+
- If unclear, default to simulate_mock_interview
|
253 |
|
254 |
+
Respond with JSON
|
255 |
+
"""
|
256 |
+
resp = self.model.generate_content(prompt).text.strip()
|
257 |
+
if resp.startswith("```json"):
|
258 |
+
resp = resp.replace("```json", "").replace("```", "").strip()
|
259 |
+
j = json.loads(resp)
|
260 |
+
return j.get("tool"), j.get("args", {})
|
261 |
+
|
262 |
+
def process_query(self, query, user_id="default"):
|
263 |
+
tool, args = self.classify_query(query)
|
264 |
+
if tool not in self.tools:
|
265 |
+
return {"text": "Sorry, I didn't get that. Ask for coding practice, interview questions, or mock interview!"}
|
266 |
+
|
267 |
+
if tool == "simulate_mock_interview":
|
268 |
+
result = self.tools[tool](args.get("query", query), user_id)
|
269 |
+
else:
|
270 |
+
result = self.tools[tool](args.get("query", query))
|
271 |
+
return {"text": result["response"]}
|
272 |
|
273 |
# βββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββ
|
|
|
274 |
agent = InterviewPrepAgent()
|
275 |
|
276 |
def chat_interface(message, history):
|
277 |
+
resp = agent.process_query(message, user_id="gradio_user")
|
278 |
+
return resp.get("text", "Something went wrong, try again.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
def create_examples():
|
|
|
281 |
return [
|
282 |
+
["Give me daily coding questions"],
|
283 |
+
["Start a mock interview"],
|
284 |
+
["Python interview questions"],
|
285 |
+
["React interview questions"],
|
286 |
+
["Show me problem 1"],
|
287 |
+
["Data structures interview questions"],
|
288 |
]
|
289 |
|
290 |
+
with gr.Blocks(title="Interview Prep Assistant", theme=gr.themes.Soft()) as interface:
|
291 |
+
gr.Markdown("# π― Interview Prep Assistant\nYour AI-powered interview practice companion!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
chatbot = gr.ChatInterface(
|
293 |
fn=chat_interface,
|
|
|
|
|
294 |
examples=create_examples(),
|
295 |
+
chatbot=gr.Chatbot(height=500, show_label=False, container=True, type="messages"),
|
296 |
+
textbox=gr.Textbox(placeholder="Type your message here...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
)
|
298 |
+
gr.Markdown(f"\n---\n**System Status:**\n- β
Google API Configured\n- β
{len(LEETCODE_DATA)} LeetCode Problems Loaded\n- {'β
' if TAVILY_API_KEY else 'β'} Tavily Search Available")
|
299 |
|
|
|
300 |
if __name__ == "__main__":
|
301 |
+
interface.launch(server_port=8000, share=True, show_error=True, quiet=False)
|
|
|
|
|
|
|
|
|
|
|
|