import json import os import re import pandas as pd import random import warnings from fastapi import FastAPI, HTTPException from pydantic import BaseModel from dotenv import load_dotenv from langchain_tavily import TavilySearch import google.generativeai as genai import gdown warnings.filterwarnings("ignore") load_dotenv() TAVILY_API_KEY = os.getenv("TAVILY_API_KEY") GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") user_sessions = {} if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY environment variable is required.") genai.configure(api_key=GOOGLE_API_KEY) # ——— Load or fallback LeetCode data —————————————————————————— OUTPUT_FILE = "leetcode_downloaded.xlsx" GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1KK9Mnm15hV3ALJo-quJndftWfaujJ7K2_zHMCTo5mGE/" FILE_ID = GOOGLE_SHEET_URL.split("/d/")[1].split("/")[0] DOWNLOAD_URL = f"https://drive.google.com/uc?export=download&id={FILE_ID}" try: if os.path.exists(OUTPUT_FILE): print(f"Loading LeetCode data from local file: {OUTPUT_FILE}") LEETCODE_DATA = pd.read_excel(OUTPUT_FILE) else: print("Local LeetCode file not found. Attempting to download...") print("Downloading LeetCode data...") gdown.download(DOWNLOAD_URL, OUTPUT_FILE, quiet=False) LEETCODE_DATA = pd.read_excel(OUTPUT_FILE) print(f"Loaded {len(LEETCODE_DATA)} problems") except Exception as e: print(f"Failed to load or download LeetCode data: {str(e)}") print("Using fallback dataset.") LEETCODE_DATA = pd.DataFrame([ {"problem_no": 3151, "problem_level": "Easy", "problem_statement": "special array", "problem_link": "https://leetcode.com/problems/special-array-i/?envType=daily-question&envId=2025-06-01"}, {"problem_no": 1752, "problem_level": "Easy", "problem_statement": "check if array is sorted and rotated", "problem_link": "https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/?envType=daily-question&envId=2025-06-01"}, {"problem_no": 3105, "problem_level": "Easy", "problem_statement": "longest strictly increasing or strictly decreasing subarray", "problem_link": "https://leetcode.com/problems/longest-strictly-increasing-or-strictly-decreasing-subarray/?envType=daily-question&envId=2025-06-01"}, {"problem_no": 1, "problem_level": "Easy", "problem_statement": "two sum", "problem_link": "https://leetcode.com/problems/two-sum/"}, {"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers", "problem_link": "https://leetcode.com/problems/add-two-numbers/"}, {"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters", "problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"}, {"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays", "problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"}, {"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring", "problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"} ]) # ——— Helpers & Tools —————————————————————————————————————————— QUESTION_TYPE_MAPPING = { "easy": "Easy", "Easy": "Easy", "medium": "Medium", "Medium": "Medium", "hard": "Hard", "Hard": "Hard" } def preprocess_query(query: str) -> str: for k, v in QUESTION_TYPE_MAPPING.items(): query = re.sub(rf'\b{k}\b', v, query, flags=re.IGNORECASE) query = re.sub(r'\bproblem\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE) query = re.sub(r'\bquestion\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE) query = re.sub(r'\b(find|search)\s+interview\s+questions\s+for\s+', '', query, flags=re.IGNORECASE) query = re.sub(r'\binterview\s+questions\b', '', query, flags=re.IGNORECASE).strip() return query def get_daily_coding_question(query: str = "") -> dict: try: response = "**Daily Coding Questions**\n\n" m = re.search(r'Problem_(\d+)', query, re.IGNORECASE) if m: df = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == int(m.group(1))] if not df.empty: p = df.iloc[0] response += ( f"**Problem {p['problem_no']}**\n" f"Level: {p['problem_level']}\n" f"Statement: {p['problem_statement']}\n" f"Link: {p['problem_link']}\n\n" ) return {"status": "success", "response": response} else: return {"status": "error", "response": "Problem not found"} if query.strip(): df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)] else: df = LEETCODE_DATA easy_questions = df[df['problem_level'] == 'Easy'].sample(min(3, len(df[df['problem_level'] == 'Easy']))) medium_questions = df[df['problem_level'] == 'Medium'].sample(min(1, len(df[df['problem_level'] == 'Medium']))) hard_questions = df[df['problem_level'] == 'Hard'].sample(min(1, len(df[df['problem_level'] == 'Hard']))) response += "**Easy Questions**\n" for i, p in enumerate(easy_questions.itertuples(), 1): response += ( f"{i}. Problem {p.problem_no}: {p.problem_statement}\n" f" Level: {p.problem_level}\n" f" Link: {p.problem_link}\n\n" ) response += "**Medium Question**\n" for p in medium_questions.itertuples(): response += ( f"Problem {p.problem_no}: {p.problem_statement}\n" f"Level: {p.problem_level}\n" f"Link: {p.problem_link}\n\n" ) response += "**Hard Question**\n" for p in hard_questions.itertuples(): response += ( f"Problem {p.problem_no}: {p.problem_statement}\n" f"Level: {p.problem_level}\n" f"Link: {p.problem_link}\n" ) return {"status": "success", "response": response} except Exception as e: return {"status": "error", "response": f"Error: {e}"} def fetch_interview_questions(query: str) -> dict: if not TAVILY_API_KEY: return {"status": "error", "response": "Tavily API key not configured"} if not query.strip() or query.lower() in ["a", "interview", "question", "questions"]: return {"status": "error", "response": "Please provide a specific topic for interview questions (e.g., 'Python', 'data structures', 'system design')."} try: tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=5) search_query = f"{query} interview questions -inurl:(signup | login)" print(f"Executing Tavily search for: {search_query}") results = tavily.invoke(search_query) print(f"Raw Tavily results: {results}") if not results or not isinstance(results, list) or len(results) == 0: return {"status": "success", "response": "No relevant interview questions found. Try a more specific topic or different keywords."} resp = "**Interview Questions Search Results for '{}':**\n\n".format(query) for i, r in enumerate(results, 1): if isinstance(r, dict): title = r.get('title', 'No title') url = r.get('url', 'No URL') content = r.get('content', '') content = content[:200] + '…' if len(content) > 200 else content or "No preview available" resp += f"{i}. **{title}**\n URL: {url}\n Preview: {content}\n\n" else: resp += f"{i}. {str(r)[:200]}{'…' if len(str(r)) > 200 else ''}\n\n" return {"status": "success", "response": resp} except Exception as e: print(f"Tavily search failed: {str(e)}") return {"status": "error", "response": f"Search failed: {str(e)}"} def simulate_mock_interview(query: str, user_id: str = "default") -> dict: qtype = "mixed" if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR" if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical" if "interview question" in query.lower() and qtype == "mixed": qtype = "HR" if qtype == "HR": hr_questions = [ "Tell me about yourself.", "What is your greatest weakness?", "Describe a challenge you overcame.", "Why do you want to work here?", "Where do you see yourself in 5 years?", "Why are you leaving your current job?", "Describe a time when you had to work with a difficult team member.", "What are your salary expectations?", "Tell me about a time you failed.", "What motivates you?", "How do you handle stress and pressure?", "Describe your leadership style." ] q = random.choice(hr_questions) return {"status": "success", "response": ( f"**Mock Interview (HR/Behavioral)**\n\n**Question:** {q}\n\n💡 **Tips:**\n" f"- Use the STAR method (Situation, Task, Action, Result)\n" f"- Provide specific examples from your experience\n" f"- Keep your answer concise but detailed\n\n**Your turn to answer!**" )} else: p = LEETCODE_DATA.sample(1).iloc[0] return {"status": "success", "response": ( f"**Mock Interview (Technical)**\n\n**Problem:** {p['problem_statement'].title()}\n" f"**Difficulty:** {p['problem_level']}\n**Link:** {p['problem_link']}\n\n💡 **Tips:**\n" f"- Think out loud as you solve\n" f"- Ask clarifying questions\n" f"- Discuss time/space complexity\n\n**Explain your approach!**" )} # ——— The Enhanced InterviewPrepAgent —————————————————————————————— class InterviewPrepAgent: def __init__(self): self.model = genai.GenerativeModel('gemini-1.5-flash') self.tools = { "get_daily_coding_question": get_daily_coding_question, "fetch_interview_questions": fetch_interview_questions, "simulate_mock_interview": simulate_mock_interview } self.instruction_text = """ You are an interview preparation assistant. Analyze the user's query and determine which tool to use. Available tools: 1. get_daily_coding_question - For coding practice, LeetCode problems, daily questions 2. fetch_interview_questions - For searching interview questions on specific topics 3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical) Instructions: - If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question - If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions - If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview - If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus Respond ONLY with valid JSON in this exact format: {"tool": "tool_name", "args": {"param1": "value1", "param2": "value2"}} User Query: {query} """ def _classify_intent(self, query: str) -> tuple[str, dict]: query_lower = query.lower() # Prioritize HR/behavioral for explicit mentions if any(keyword in query_lower for keyword in ["hr", "behavioral", "give hr questions", "give behavioral questions"]): return "simulate_mock_interview", {"query": query, "user_id": "default"} # Handle mock interview or simulation requests if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]): return "simulate_mock_interview", {"query": query, "user_id": "default"} # Handle coding-related queries if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]): problem_match = re.search(r'problem\s*(\d+)', query_lower) if problem_match: return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"} if "easy" in query_lower: return "get_daily_coding_question", {"query": "Easy"} elif "medium" in query_lower: return "get_daily_coding_question", {"query": "Medium"} elif "hard" in query_lower: return "get_daily_coding_question", {"query": "Hard"} return "get_daily_coding_question", {"query": ""} # Handle topic-specific interview questions if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \ "interview" in query_lower: return "fetch_interview_questions", {"query": query} # Fallback to LLM classification try: prompt = self.instruction_text.format(query=query) response = self.model.generate_content(prompt) result = json.loads(response.text.strip()) tool_name = result.get("tool") args = result.get("args", {}) return tool_name, args except Exception as e: print(f"LLM classification failed: {e}") return "get_daily_coding_question", {"query": ""} def process_query(self, query: str, user_id: str, session_id: str) -> str: if not GOOGLE_API_KEY: return "Error: Google API not configured." session_key = f"{user_id}_{session_id}" user_sessions.setdefault(session_key, {"history": []}) tool_name, args = self._classify_intent(query) print(f"Selected tool: {tool_name}, args: {args}") # Debug log if tool_name not in self.tools: return f"I couldn't understand your request. Please try asking for:\n- Daily coding question\n- Mock interview\n- Interview questions for a specific topic" result = self.tools[tool_name](**args) user_sessions[session_key]["history"].append({ "query": query, "response": result["response"] }) return result["response"] # ——— FastAPI Setup —————————————————————————————————————————— app = FastAPI(title="Interview Prep API", version="2.0.0") agent = InterviewPrepAgent() class ChatRequest(BaseModel): user_id: str session_id: str question: str class ChatResponse(BaseModel): session_id: str answer: str @app.post("/chat", response_model=ChatResponse) async def chat(req: ChatRequest): q = preprocess_query(req.question) print(f"Preprocessed query: {q}") # Debug log ans = agent.process_query(q, req.user_id, req.session_id) return ChatResponse(session_id=req.session_id, answer=ans) @app.get("/healthz") def health(): status = {"status": "ok", "google_api": bool(GOOGLE_API_KEY), "leetcode_count": len(LEETCODE_DATA), "tavily": bool(TAVILY_API_KEY)} return status @app.get("/") def root(): return {"message": "Interview Prep API v2", "endpoints": ["/chat", "/healthz"]} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)