File size: 6,058 Bytes
f92d24c
1b4bba1
 
 
 
 
 
 
f92d24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1391d4
f92d24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os

# === CRITICAL: Set cache directories BEFORE any other imports ===
os.environ['HF_HOME'] = '/tmp/huggingface_cache'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['HF_DATASETS_CACHE'] = '/tmp/datasets_cache'

# Now import everything else
import json
import datetime
import requests
import gspread
from dotenv import load_dotenv
from huggingface_hub import login as hf_login
from langchain_community.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from sentence_transformers import SentenceTransformer
from langchain_tavily import TavilySearch
from google.adk.tools import FunctionTool

# === LOAD ENV ===
load_dotenv()
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
SERVICE_ACCOUNT_JSON = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
SHEET_KEY = os.getenv("SHEET_KEY")
PREDICTOR_API_URL = os.getenv("PREDICTOR_API_URL")
PREDICTOR_API_KEY = os.getenv("PREDICTOR_API_KEY")

hf_login(token=HF_TOKEN)

# === GOOGLE SHEET LOGGING ===
service_account_dict = json.loads(SERVICE_ACCOUNT_JSON) if isinstance(SERVICE_ACCOUNT_JSON, str) else SERVICE_ACCOUNT_JSON

def add_query_to_sheet(user_id: str, query: str, response: str):
    gc = gspread.service_account_from_dict(service_account_dict)
    sh = gc.open_by_key(SHEET_KEY)
    ws = sh.worksheet("Sheet1")
    timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    ws.append_row([user_id, timestamp, query, response])

# === VECTOR STORE ===
def load_vector_store(data_dir: str):
    texts = []
    for fname in os.listdir(data_dir):
        if fname.lower().endswith(".md"):
            path = os.path.join(data_dir, fname)
            try:
                with open(path, "r", encoding="utf-8") as f:
                    texts.append(f.read())
            except UnicodeDecodeError:
                with open(path, "r", encoding="latin-1") as f:
                    texts.append(f.read())
    st_model = SentenceTransformer("all-MiniLM-L6-v2")
    class LocalEmbeddings(Embeddings):
        def embed_documents(self, docs):
            return st_model.encode(docs).tolist()
        def embed_query(self, q):
            return st_model.encode([q])[0].tolist()
    return FAISS.from_texts(texts, LocalEmbeddings())

vector_store = load_vector_store("College_markdown")

# === TOOL DEFINITIONS ===
def db_search(query: str) -> dict:
    docs = vector_store.similarity_search(query, k=6)
    if not docs: return {"results": []}
    return {"results": [d.page_content for d in docs]}

def tavily_search(query: str) -> dict:
    tool = TavilySearch(max_results=6, topic="general", include_raw_content=True)
    result = tool.invoke({"query": query})
    snippets = [item.get('content') for item in result.get('results', [])]
    return {"results": snippets or []}

def college_predictor(
    userCrl: int,
    userCategory: str,
    userGender: str,
    userHomeState: str,
    limit: int = 6,
    counsellingName: str = "josaa",
    collegeName: str = "national institute of technology",
    branchName: str = "computer science and engineering"
) -> str:
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {PREDICTOR_API_KEY}"
    }
    params = {
        "userCrl": userCrl,
        "userCategory": userCategory,
        "userGender": userGender,
        "userHomeState": userHomeState,
        "limit": limit,
        "counsellingName": counsellingName,
    }
    if collegeName:
        params["collegeQuery"] = collegeName
    if branchName:
        params["branchQuery"] = branchName

    try:
        response = requests.post(PREDICTOR_API_URL, json=params, headers=headers, timeout=30)
        response.raise_for_status()
        data = response.json()

        if not data or 'data' not in data or 'colleges' not in data['data']:
            return "No college predictions found with the given criteria."

        colleges = data['data']['colleges']
        if not colleges:
            return "No college predictions found with the given criteria."

        results = []
        for i, college in enumerate(colleges[:limit], start=1):
            parts = [f"{i}. College: {college.get('Institute', 'N/A')}"]
            if college.get('Academic_Program_Name'):
                parts.append(f"Branch: {college['Academic_Program_Name']}")
            if college.get('Seat_Type'):
                parts.append(f"Category: {college['Seat_Type']}")
            if college.get('Max_ClosingRank'):
                parts.append(f"Closing Rank: {college['Max_ClosingRank']}")
            results.append(", ".join(parts))

        return f"Based on your rank {userCrl}, here are college predictions:\n\n" + "\n".join(results)

    except requests.exceptions.RequestException as e:
        return f"Error fetching college predictions: {str(e)}"

def mentor_search(college_query: str) -> str:
    """Search mentors by college name and return formatted links."""
    url = f"https://test.api.precollege.in/api/v1/mentor/search?q={college_query}"
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        data = response.json()

        if not data or "data" not in data or not data["data"]:
            return f"No mentors found for '{college_query}'."

        mentors = data["data"]
        lines = []
        for mentor in mentors:
            name = mentor.get("name", "Unknown")
            username = mentor.get("username", "")
            profile_url = f"https://www.precollege.in/mentor/{username}" if username else "No profile link"
            lines.append(f"{name}: {profile_url}")

        return f"Mentors for '{college_query}':\n\n" + "\n".join(lines)
    except requests.exceptions.RequestException as e:
        return f"Failed to fetch mentors: {str(e)}"


# === FUNCTION TOOL WRAPPERS ===
db_tool = FunctionTool(db_search)
tavily_tool = FunctionTool(tavily_search)
predictor_tool = FunctionTool(college_predictor)
mentor_tool = FunctionTool(mentor_search)