File size: 13,600 Bytes
faed9d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import io
import requests
import argparse
import asyncio
import numpy as np
import ffmpeg
from time import time

from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware

from src.whisper_streaming.whisper_online import backend_factory, online_factory, add_shared_args


import logging
import logging.config
from transformers import pipeline

MODEL_NAME = 'Helsinki-NLP/opus-tatoeba-en-ja'
TRANSLATOR = pipeline('translation', model=MODEL_NAME, device='cuda')
TRANSLATOR('Warming up!')

API_KEY = '3c2b8b0f-4fa9-4eb7-b67d-7cae25546051:fx' # 自身の API キーを指定

SOURCE_LANG = 'EN'
TARGET_LANG = 'JA'

def translator_wrapper(source_text, mode='deepl'):
    if mode == 'deepl':
        params = {
                    'auth_key' : API_KEY,
                    'text' : source_text,
                    'source_lang' : SOURCE_LANG, # 翻訳対象の言語
                    "target_lang": TARGET_LANG  # 翻訳後の言語
                }

        # リクエストを投げる
        try:
            request = requests.post("https://api-free.deepl.com/v2/translate", data=params, timeout=5) # URIは有償版, 無償版で異なるため要注意
            result = request.json()['translations'][0]['text']
        except requests.exceptions.Timeout:
            result = "(timed out)"
        return result

    elif mode == 'marianmt':
        return TRANSLATOR(source_text)[0]['translation_text']

    elif mode == 'google':
        import  requests

        # https://www.eyoucms.com/news/ziliao/other/29445.html
        language_type = ""
        target = 'ja-jp'
        url = "https://translation.googleapis.com/language/translate/v2"
        data = {
            'key':"AIzaSyCX0-Wdxl_rgvcZzklNjnqJ1W9YiKjcHUs", #  認証の設定:APIキー
            'source': language_type,
            'target': target,
            'q': source_text,
            'format': "text"
        }
        #headers = {'X-HTTP-Method-Override': 'GET'}
        #response = requests.post(url, data=data, headers=headers)
        response = requests.post(url, data)
        # print(response.json())
        print(response)
        res = response.json()
        print(res["data"]["translations"][0]["translatedText"])
        result = res["data"]["translations"][0]["translatedText"]
        print(result)
        return result


def setup_logging():
    logging_config = {
        'version': 1,
        'disable_existing_loggers': False,
        'formatters': {
            'standard': {
                'format': '%(asctime)s %(levelname)s [%(name)s]: %(message)s',
            },
        },
        'handlers': {
            'console': {
                'level': 'INFO',
                'class': 'logging.StreamHandler',
                'formatter': 'standard',
            },
        },
        'root': {
            'handlers': ['console'],
            'level': 'DEBUG',
        },
        'loggers': {
            'uvicorn': {
                'handlers': ['console'],
                'level': 'INFO',
                'propagate': False,
            },
            'uvicorn.error': {
                'level': 'INFO',
            },
            'uvicorn.access': {
                'level': 'INFO',
            },
            'src.whisper_streaming.online_asr': {  # Add your specific module here
                'handlers': ['console'],
                'level': 'DEBUG',
                'propagate': False,
            },
            'src.whisper_streaming.whisper_streaming': {  # Add your specific module here
                'handlers': ['console'],
                'level': 'DEBUG',
                'propagate': False,
            },
        },
    }

    logging.config.dictConfig(logging_config)

setup_logging()
logger = logging.getLogger(__name__)






app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
    "--host",
    type=str,
    default="localhost",
    help="The host address to bind the server to.",
)
parser.add_argument(
    "--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
    "--warmup-file",
    type=str,
    dest="warmup_file",
    help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .",
)

parser.add_argument(
    "--diarization",
    type=bool,
    default=False,
    help="Whether to enable speaker diarization.",
)


add_shared_args(parser)
args = parser.parse_args()
# args.model = 'medium'

asr, tokenizer = backend_factory(args)

if args.diarization:
    from src.diarization.diarization_online import DiartDiarization


# Load demo HTML for the root endpoint
with open("src/web/live_transcription.html", "r", encoding="utf-8") as f:
    html = f.read()


@app.get("/")
async def get():
    return HTMLResponse(html)


SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2  # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE


async def start_ffmpeg_decoder():
    """

    Start an FFmpeg process in async streaming mode that reads WebM from stdin

    and outputs raw s16le PCM on stdout. Returns the process object.

    """
    process = (
        ffmpeg.input("pipe:0", format="webm")
        .output(
            "pipe:1",
            format="s16le",
            acodec="pcm_s16le",
            ac=CHANNELS,
            ar=str(SAMPLE_RATE),
        )
        .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
    )
    return process



@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    print("WebSocket connection opened.")

    ffmpeg_process = await start_ffmpeg_decoder()
    pcm_buffer = bytearray()
    print("Loading online.")
    online = online_factory(args, asr, tokenizer)
    print("Online loaded.")

    if args.diarization:
        diarization = DiartDiarization(SAMPLE_RATE)

    # Continuously read decoded PCM from ffmpeg stdout in a background task
    async def ffmpeg_stdout_reader():
        nonlocal pcm_buffer
        loop = asyncio.get_event_loop()
        full_transcription = ""
        beg = time()
        
        chunk_history = []  # Will store dicts: {beg, end, text, speaker}

        buffers = [{'speaker': '0', 'text': '', 'translation': None}]
        buffer_line = ''
        
        while True:
            print('in while')
            try:
                print('try in while')
                elapsed_time = int(time() - beg)
                beg = time()
                print('before await loop.run_in_executor()')
                chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 32000 * elapsed_time)

                print('before if not chunk')
                if not chunk:  # The first chunk will be almost empty, FFmpeg is still starting up
                    chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 4096)
                    if not chunk:  # FFmpeg might have closed
                        print("FFmpeg stdout closed.")
                        break

                pcm_buffer.extend(chunk)

                print('before if len(pcm_buffer)')
                if len(pcm_buffer) >= BYTES_PER_SEC:
                    print('in if len(pcm_buffer)')
                    # Convert int16 -> float32
                    pcm_array = (np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32) / 32768.0)
                    pcm_buffer = bytearray()  # Initialize the PCM buffer
                    online.insert_audio_chunk(pcm_array)
                    beg_trans, end_trans, trans = online.process_iter()
                    
                    if trans:
                        chunk_history.append({
                        "beg": beg_trans,
                        "end": end_trans,
                        "text": trans,
                        "speaker": "0"
                        })
                    full_transcription += trans
                    
                    # ----------------
                    # Process buffer
                    # ----------------
                    if args.vac:
                        # We need to access the underlying online object to get the buffer
                        buffer = online.online.concatenate_tsw(online.online.transcript_buffer.buffer)[2]
                    else:
                        buffer = online.concatenate_tsw(online.transcript_buffer.buffer)[2]

                    if buffer in full_transcription:  # With VAC, the buffer is not updated until the next chunk is processed
                        buffer = ""

                    buffer_line += buffer
                                        
                    punctuations = (',', '.', '?', '!', 'and', 'or', 'but', 'however')
                    if any(punctuation in buffer_line for punctuation in punctuations):
                        last_punctuation_index = max((buffer_line.rfind(p) + len(p) + 1) for p in punctuations if p in buffer_line)
                        extracted_text = buffer_line[:last_punctuation_index]
                        buffer_line = buffer_line[last_punctuation_index:]
                        buffers.append({'speaker': '0', 'text': extracted_text, 'translation': None})

                    # Translation loop
                    print('buffers for loop')
                    for i, buffer in enumerate(buffers):
                        print(i, buffer)
                        if buffer['translation'] is not None:
                            continue
                        if buffer['text'] == '':
                            continue

                        transcription = buffer['text']
                        buffers[i]['translation'] = translator_wrapper(transcription, mode='google')
                        buffers[i]['text'] += ('|' + buffers[i]['translation'])

                    # ----------------
                    # Process lines
                    # ----------------
                    print('Process lines')
                    lines = [{"speaker": "0", "text": ""}]
                    
                    if args.diarization:
                        await diarization.diarize(pcm_array)
                        # diarization.assign_speakers_to_chunks(chunk_history)
                        chunk_history = diarization.assign_speakers_to_chunks(chunk_history)

                    for ch in chunk_history:
                        if args.diarization and ch["speaker"] and ch["speaker"][-1] != lines[-1]["speaker"]:
                            lines.append({"speaker": ch["speaker"], "text": ch['text']})

                        else:
                            lines.append({"speaker": ch["speaker"], "text": ch['text']})

                    for i, line in enumerate(lines):
                        if line['text'].strip() == '':
                            continue
                        # translation = translator(line['text'])[0]['translation_text']
                        # translation = translation.replace(' ', '')
                        # lines[i]['text'] = line['text'] + translation
                        lines[i]['text'] = line['text']

                    # translation = translator(buffer)[0]['translation_text']
                    # translation = translation.replace(' ', '')
                    # buffer += translation

                    print('Before making response')
                    response = {"lines": buffers, "buffer": ''}
                    await websocket.send_json(response)
                    
            except Exception as e:
                print(f"Exception in ffmpeg_stdout_reader: {e}")
                break

        print("Exiting ffmpeg_stdout_reader...")

    stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())

    try:
        while True:
            # Receive incoming WebM audio chunks from the client
            message = await websocket.receive_bytes()
            # Pass them to ffmpeg via stdin
            ffmpeg_process.stdin.write(message)
            ffmpeg_process.stdin.flush()

    except WebSocketDisconnect:
        print("WebSocket connection closed.")
    except Exception as e:
        print(f"Error in websocket loop: {e}")
    finally:
        # Clean up ffmpeg and the reader task
        try:
            ffmpeg_process.stdin.close()
        except:
            pass
        stdout_reader_task.cancel()

        try:
            ffmpeg_process.stdout.close()
        except:
            pass

        ffmpeg_process.wait()
        del online
        
        if args.diarization:
            # Stop Diart
            diarization.close()




if __name__ == "__main__":
    import uvicorn

    uvicorn.run(
        "whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True,
        log_level="info"
    )