File size: 13,508 Bytes
faed9d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import sys
import logging
import io
import soundfile as sf
import math
logger = logging.getLogger(__name__)
class ASRBase:
sep = " " # join transcribe words with this character (" " for whisper_timestamped,
# "" for faster-whisper because it emits the spaces when neeeded)
def __init__(
self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr
):
self.logfile = logfile
self.transcribe_kargs = {}
if lan == "auto":
self.original_language = None
else:
self.original_language = lan
self.model = self.load_model(modelsize, cache_dir, model_dir)
def load_model(self, modelsize, cache_dir):
raise NotImplemented("must be implemented in the child class")
def transcribe(self, audio, init_prompt=""):
raise NotImplemented("must be implemented in the child class")
def use_vad(self):
raise NotImplemented("must be implemented in the child class")
class WhisperTimestampedASR(ASRBase):
"""Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper.
On the other hand, the installation for GPU could be easier.
"""
sep = " "
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
import whisper
import whisper_timestamped
from whisper_timestamped import transcribe_timestamped
self.transcribe_timestamped = transcribe_timestamped
if model_dir is not None:
logger.debug("ignoring model_dir, not implemented")
return whisper.load_model(modelsize, download_root=cache_dir)
def transcribe(self, audio, init_prompt=""):
result = self.transcribe_timestamped(
self.model,
audio,
language=self.original_language,
initial_prompt=init_prompt,
verbose=None,
condition_on_previous_text=True,
**self.transcribe_kargs,
)
return result
def ts_words(self, r):
# return: transcribe result object to [(beg,end,"word1"), ...]
o = []
for s in r["segments"]:
for w in s["words"]:
t = (w["start"], w["end"], w["text"])
o.append(t)
return o
def segments_end_ts(self, res):
return [s["end"] for s in res["segments"]]
def use_vad(self):
self.transcribe_kargs["vad"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class FasterWhisperASR(ASRBase):
"""Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version."""
sep = ""
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
from faster_whisper import WhisperModel
# logging.getLogger("faster_whisper").setLevel(logger.level)
if model_dir is not None:
logger.debug(
f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used."
)
model_size_or_path = model_dir
elif modelsize is not None:
model_size_or_path = modelsize
else:
raise ValueError("modelsize or model_dir parameter must be set")
# this worked fast and reliably on NVIDIA L40
model = WhisperModel(
model_size_or_path,
device="cuda",
compute_type="float16",
download_root=cache_dir,
)
# or run on GPU with INT8
# tested: the transcripts were different, probably worse than with FP16, and it was slightly (appx 20%) slower
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# tested: works, but slow, appx 10-times than cuda FP16
# model = WhisperModel(modelsize, device="cpu", compute_type="int8") #, download_root="faster-disk-cache-dir/")
return model
def transcribe(self, audio, init_prompt=""):
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
segments, info = self.model.transcribe(
audio,
language=self.original_language,
initial_prompt=init_prompt,
beam_size=5,
word_timestamps=True,
condition_on_previous_text=True,
**self.transcribe_kargs,
)
# print(info) # info contains language detection result
return list(segments)
def ts_words(self, segments):
o = []
for segment in segments:
for word in segment.words:
if segment.no_speech_prob > 0.9:
continue
# not stripping the spaces -- should not be merged with them!
w = word.word
t = (word.start, word.end, w)
o.append(t)
return o
def segments_end_ts(self, res):
return [s.end for s in res]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class MLXWhisper(ASRBase):
"""
Uses MPX Whisper library as the backend, optimized for Apple Silicon.
Models available: https://huggingface.co/collections/mlx-community/whisper-663256f9964fbb1177db93dc
Significantly faster than faster-whisper (without CUDA) on Apple M1.
"""
sep = "" # In my experience in french it should also be no space.
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
"""
Loads the MLX-compatible Whisper model.
Args:
modelsize (str, optional): The size or name of the Whisper model to load.
If provided, it will be translated to an MLX-compatible model path using the `translate_model_name` method.
Example: "large-v3-turbo" -> "mlx-community/whisper-large-v3-turbo".
cache_dir (str, optional): Path to the directory for caching models.
**Note**: This is not supported by MLX Whisper and will be ignored.
model_dir (str, optional): Direct path to a custom model directory.
If specified, it overrides the `modelsize` parameter.
"""
from mlx_whisper.transcribe import ModelHolder, transcribe
import mlx.core as mx
if model_dir is not None:
logger.debug(
f"Loading whisper model from model_dir {model_dir}. modelsize parameter is not used."
)
model_size_or_path = model_dir
elif modelsize is not None:
model_size_or_path = self.translate_model_name(modelsize)
logger.debug(
f"Loading whisper model {modelsize}. You use mlx whisper, so {model_size_or_path} will be used."
)
self.model_size_or_path = model_size_or_path
# In mlx_whisper.transcribe, dtype is defined as:
# dtype = mx.float16 if decode_options.get("fp16", True) else mx.float32
# Since we do not use decode_options in self.transcribe, we will set dtype to mx.float16
dtype = mx.float16
ModelHolder.get_model(model_size_or_path, dtype)
return transcribe
def translate_model_name(self, model_name):
"""
Translates a given model name to its corresponding MLX-compatible model path.
Args:
model_name (str): The name of the model to translate.
Returns:
str: The MLX-compatible model path.
"""
# Dictionary mapping model names to MLX-compatible paths
model_mapping = {
"tiny.en": "mlx-community/whisper-tiny.en-mlx",
"tiny": "mlx-community/whisper-tiny-mlx",
"base.en": "mlx-community/whisper-base.en-mlx",
"base": "mlx-community/whisper-base-mlx",
"small.en": "mlx-community/whisper-small.en-mlx",
"small": "mlx-community/whisper-small-mlx",
"medium.en": "mlx-community/whisper-medium.en-mlx",
"medium": "mlx-community/whisper-medium-mlx",
"large-v1": "mlx-community/whisper-large-v1-mlx",
"large-v2": "mlx-community/whisper-large-v2-mlx",
"large-v3": "mlx-community/whisper-large-v3-mlx",
"large-v3-turbo": "mlx-community/whisper-large-v3-turbo",
"large": "mlx-community/whisper-large-mlx",
}
# Retrieve the corresponding MLX model path
mlx_model_path = model_mapping.get(model_name)
if mlx_model_path:
return mlx_model_path
else:
raise ValueError(
f"Model name '{model_name}' is not recognized or not supported."
)
def transcribe(self, audio, init_prompt=""):
if self.transcribe_kargs:
logger.warning("Transcribe kwargs (vad, task) are not compatible with MLX Whisper and will be ignored.")
segments = self.model(
audio,
language=self.original_language,
initial_prompt=init_prompt,
word_timestamps=True,
condition_on_previous_text=True,
path_or_hf_repo=self.model_size_or_path,
)
return segments.get("segments", [])
def ts_words(self, segments):
"""
Extract timestamped words from transcription segments and skips words with high no-speech probability.
"""
return [
(word["start"], word["end"], word["word"])
for segment in segments
for word in segment.get("words", [])
if segment.get("no_speech_prob", 0) <= 0.9
]
def segments_end_ts(self, res):
return [s["end"] for s in res]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class OpenaiApiASR(ASRBase):
"""Uses OpenAI's Whisper API for audio transcription."""
def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
self.logfile = logfile
self.modelname = "whisper-1"
self.original_language = (
None if lan == "auto" else lan
) # ISO-639-1 language code
self.response_format = "verbose_json"
self.temperature = temperature
self.load_model()
self.use_vad_opt = False
# reset the task in set_translate_task
self.task = "transcribe"
def load_model(self, *args, **kwargs):
from openai import OpenAI
self.client = OpenAI()
self.transcribed_seconds = (
0 # for logging how many seconds were processed by API, to know the cost
)
def ts_words(self, segments):
no_speech_segments = []
if self.use_vad_opt:
for segment in segments.segments:
# TODO: threshold can be set from outside
if segment["no_speech_prob"] > 0.8:
no_speech_segments.append(
(segment.get("start"), segment.get("end"))
)
o = []
for word in segments.words:
start = word.start
end = word.end
if any(s[0] <= start <= s[1] for s in no_speech_segments):
# print("Skipping word", word.get("word"), "because it's in a no-speech segment")
continue
o.append((start, end, word.word))
return o
def segments_end_ts(self, res):
return [s.end for s in res.words]
def transcribe(self, audio_data, prompt=None, *args, **kwargs):
# Write the audio data to a buffer
buffer = io.BytesIO()
buffer.name = "temp.wav"
sf.write(buffer, audio_data, samplerate=16000, format="WAV", subtype="PCM_16")
buffer.seek(0) # Reset buffer's position to the beginning
self.transcribed_seconds += math.ceil(
len(audio_data) / 16000
) # it rounds up to the whole seconds
params = {
"model": self.modelname,
"file": buffer,
"response_format": self.response_format,
"temperature": self.temperature,
"timestamp_granularities": ["word", "segment"],
}
if self.task != "translate" and self.original_language:
params["language"] = self.original_language
if prompt:
params["prompt"] = prompt
if self.task == "translate":
proc = self.client.audio.translations
else:
proc = self.client.audio.transcriptions
# Process transcription/translation
transcript = proc.create(**params)
logger.debug(
f"OpenAI API processed accumulated {self.transcribed_seconds} seconds"
)
return transcript
def use_vad(self):
self.use_vad_opt = True
def set_translate_task(self):
self.task = "translate"
|