File size: 18,467 Bytes
faed9d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import sys
import numpy as np
import logging
logger = logging.getLogger(__name__)
class HypothesisBuffer:
def __init__(self, logfile=sys.stderr):
self.commited_in_buffer = []
self.buffer = []
self.new = []
self.last_commited_time = 0
self.last_commited_word = None
self.logfile = logfile
def insert(self, new, offset):
"""
compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
The new tail is added to self.new
"""
new = [(a + offset, b + offset, t) for a, b, t in new]
self.new = [(a, b, t) for a, b, t in new if a > self.last_commited_time - 0.1]
if len(self.new) >= 1:
a, b, t = self.new[0]
if abs(a - self.last_commited_time) < 1:
if self.commited_in_buffer:
# it's going to search for 1, 2, ..., 5 consecutive words (n-grams) that are identical in commited and new. If they are, they're dropped.
cn = len(self.commited_in_buffer)
nn = len(self.new)
for i in range(1, min(min(cn, nn), 5) + 1): # 5 is the maximum
c = " ".join(
[self.commited_in_buffer[-j][2] for j in range(1, i + 1)][
::-1
]
)
tail = " ".join(self.new[j - 1][2] for j in range(1, i + 1))
if c == tail:
words = []
for j in range(i):
words.append(repr(self.new.pop(0)))
words_msg = " ".join(words)
logger.debug(f"removing last {i} words: {words_msg}")
break
def flush(self):
# returns commited chunk = the longest common prefix of 2 last inserts.
commit = []
while self.new:
na, nb, nt = self.new[0]
if len(self.buffer) == 0:
break
if nt == self.buffer[0][2]:
commit.append((na, nb, nt))
self.last_commited_word = nt
self.last_commited_time = nb
self.buffer.pop(0)
self.new.pop(0)
else:
break
self.buffer = self.new
self.new = []
self.commited_in_buffer.extend(commit)
return commit
def pop_commited(self, time):
"Remove (from the beginning) of commited_in_buffer all the words that are finished before `time`"
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
self.commited_in_buffer.pop(0)
def complete(self):
return self.buffer
class OnlineASRProcessor:
SAMPLING_RATE = 16000
def __init__(
self,
asr,
tokenize_method=None,
buffer_trimming=("segment", 15),
logfile=sys.stderr,
):
"""
Initialize OnlineASRProcessor.
Args:
asr: WhisperASR object
tokenize_method: Sentence tokenizer function for the target language.
Must be a function that takes a list of text as input like MosesSentenceSplitter.
Can be None if using "segment" buffer trimming option.
buffer_trimming: Tuple of (option, seconds) where:
- option: Either "sentence" or "segment"
- seconds: Number of seconds threshold for buffer trimming
Default is ("segment", 15)
logfile: File to store logs
"""
self.asr = asr
self.tokenize = tokenize_method
self.logfile = logfile
self.init()
self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming
if self.buffer_trimming_way not in ["sentence", "segment"]:
raise ValueError("buffer_trimming must be either 'sentence' or 'segment'")
if self.buffer_trimming_sec <= 0:
raise ValueError("buffer_trimming_sec must be positive")
elif self.buffer_trimming_sec > 30:
logger.warning(
f"buffer_trimming_sec is set to {self.buffer_trimming_sec}, which is very long. It may cause OOM."
)
def init(self, offset=None):
"""run this when starting or restarting processing"""
self.audio_buffer = np.array([], dtype=np.float32)
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
self.buffer_time_offset = 0
if offset is not None:
self.buffer_time_offset = offset
self.transcript_buffer.last_commited_time = self.buffer_time_offset
self.final_transcript = []
self.commited_not_final = []
def insert_audio_chunk(self, audio):
self.audio_buffer = np.append(self.audio_buffer, audio)
def prompt(self):
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer.
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
"""
if len(self.final_transcript) == 0:
prompt=""
if len(self.final_transcript) == 1:
prompt = self.final_transcript[0][2][-200:]
else:
prompt = self.concatenate_tsw(self.final_transcript)[2][-200:]
# TODO: this is not ideal as we concatenate each time the whole transcript
# k = max(0, len(self.final_transcript) - 1)
# while k > 1 and self.final_transcript[k - 1][1] > self.buffer_time_offset:
# k -= 1
# p = self.final_transcript[:k]
# p = [t for _, _, t in p]
# prompt = []
# l = 0
# while p and l < 200: # 200 characters prompt size
# x = p.pop(-1)
# l += len(x) + 1
# prompt.append(x)
non_prompt = self.concatenate_tsw(self.commited_not_final)[2]
logger.debug(f"PROMPT(previous): {prompt[:20]}…{prompt[-20:]} (length={len(prompt)}chars)")
logger.debug(f"CONTEXT: {non_prompt}")
return prompt, non_prompt
def process_iter(self):
"""Runs on the current audio buffer.
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, "").
The non-emty text is confirmed (committed) partial transcript.
"""
prompt, non_prompt = self.prompt()
logger.debug(
f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}"
)
## Transcribe and format the result to [(beg,end,"word1"), ...]
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
tsw = self.asr.ts_words(res)
# insert into HypothesisBuffer, and get back the commited words
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
commited_tsw = self.transcript_buffer.flush()
if len(commited_tsw) == 0:
return (None, None, "")
self.commited_not_final.extend(commited_tsw)
# Define `completed` and `the_rest` based on the buffer_trimming_way
# completed will be returned at the end of the function.
# completed is a transcribed text with (beg,end,"sentence ...") format.
completed = []
if self.buffer_trimming_way == "sentence":
sentences = self.words_to_sentences(self.commited_not_final)
if len(sentences) < 2:
logger.debug(f"[Sentence-segmentation] no full sentence segmented, do not commit anything.")
else:
identified_sentence= "\n - ".join([f"{s[0]*1000:.0f}-{s[1]*1000:.0f} {s[2]}" for s in sentences])
logger.debug(f"[Sentence-segmentation] identified sentences:\n - {identified_sentence}")
# assume last sentence is incomplete, which is not always true
# we will continue with audio processing at this timestamp
chunk_at = sentences[-2][1]
self.chunk_at(chunk_at)
# TODO: here paragraph breaks can be added
self.commited_not_final = sentences[-1:]
completed= sentences[:-1]
# break audio buffer anyway if it is too long
if len(self.audio_buffer) / self.SAMPLING_RATE > self.buffer_trimming_sec :
if self.buffer_trimming_way == "sentence":
logger.warning(f"Chunck segment after {self.buffer_trimming_sec} seconds!"
" Even if no sentence was found!"
)
completed = self.chunk_completed_segment()
if len(completed) == 0:
return (None, None, "")
else:
self.final_transcript.extend(completed) # add whole time stamped sentences / or words to commited list
completed_text_segment= self.concatenate_tsw(completed)
the_rest = self.concatenate_tsw(self.transcript_buffer.complete())
commited_but_not_final = self.concatenate_tsw(self.commited_not_final)
logger.debug(f"\n COMPLETE NOW: {completed_text_segment[2]}\n"
f" COMMITTED (but not Final): {commited_but_not_final[2]}\n"
f" INCOMPLETE: {the_rest[2]}"
)
return completed_text_segment
def chunk_completed_segment(self) -> list:
ts_words = self.commited_not_final
if len(ts_words) <= 1:
logger.debug(f"--- not enough segments to chunk (<=1 words)")
return []
else:
ends = [w[1] for w in ts_words]
t = ts_words[-1][1] # start of the last word
e = ends[-2]
while len(ends) > 2 and e > t:
ends.pop(-1)
e = ends[-2]
if e <= t:
self.chunk_at(e)
n_commited_words = len(ends)-1
words_to_commit = ts_words[:n_commited_words]
self.final_transcript.extend(words_to_commit)
self.commited_not_final = ts_words[n_commited_words:]
return words_to_commit
else:
logger.debug(f"--- last segment not within commited area")
return []
def chunk_at(self, time):
"""trims the hypothesis and audio buffer at "time" """
logger.debug(f"chunking at {time:2.2f}s")
logger.debug(
f"len of audio buffer before chunking is: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}s"
)
self.transcript_buffer.pop_commited(time)
cut_seconds = time - self.buffer_time_offset
self.audio_buffer = self.audio_buffer[int(cut_seconds * self.SAMPLING_RATE) :]
self.buffer_time_offset = time
logger.debug(
f"len of audio buffer is now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}s"
)
def words_to_sentences(self, words):
"""Uses self.tokenize for sentence segmentation of words.
Returns: [(beg,end,"sentence 1"),...]
"""
cwords = [w for w in words]
t = self.asr.sep.join(o[2] for o in cwords)
logger.debug(f"[Sentence-segmentation] Raw Text: {t}")
s = self.tokenize([t])
out = []
while s:
beg = None
end = None
sent = s.pop(0).strip()
fsent = sent
while cwords:
b, e, w = cwords.pop(0)
w = w.strip()
if beg is None and sent.startswith(w):
beg = b
if end is None and sent == w:
end = e
if beg is not None and end is not None:
out.append((beg, end, fsent))
break
sent = sent[len(w) :].strip()
return out
def finish(self):
"""Flush the incomplete text when the whole processing ends.
Returns: the same format as self.process_iter()
"""
o = self.transcript_buffer.complete()
f = self.concatenate_tsw(o)
if f[1] is not None:
logger.debug(f"last, noncommited: {f[0]*1000:.0f}-{f[1]*1000:.0f}: {f[2]}")
self.buffer_time_offset += len(self.audio_buffer) / 16000
return f
def concatenate_tsw(
self,
tsw,
sep=None,
offset=0,
):
# concatenates the timestamped words or sentences into one sequence that is flushed in one line
# sents: [(beg1, end1, "sentence1"), ...] or [] if empty
# return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
if sep is None:
sep = self.asr.sep
t = sep.join(s[2] for s in tsw)
if len(tsw) == 0:
b = None
e = None
else:
b = offset + tsw[0][0]
e = offset + tsw[-1][1]
return (b, e, t)
class VACOnlineASRProcessor(OnlineASRProcessor):
"""Wraps OnlineASRProcessor with VAC (Voice Activity Controller).
It works the same way as OnlineASRProcessor: it receives chunks of audio (e.g. 0.04 seconds),
it runs VAD and continuously detects whether there is speech or not.
When it detects end of speech (non-voice for 500ms), it makes OnlineASRProcessor to end the utterance immediately.
"""
# TODO: VACOnlineASRProcessor does not break after chunch length is reached, this can lead to overflow!
def __init__(self, online_chunk_size, *a, **kw):
self.online_chunk_size = online_chunk_size
self.online = OnlineASRProcessor(*a, **kw)
# VAC:
import torch
model, _ = torch.hub.load(repo_or_dir="snakers4/silero-vad", model="silero_vad")
from src.whisper_streaming.silero_vad_iterator import FixedVADIterator
self.vac = FixedVADIterator(
model
) # we use the default options there: 500ms silence, 100ms padding, etc.
self.logfile = self.online.logfile
self.init()
def init(self):
self.online.init()
self.vac.reset_states()
self.current_online_chunk_buffer_size = 0
self.is_currently_final = False
self.status = None # or "voice" or "nonvoice"
self.audio_buffer = np.array([], dtype=np.float32)
self.buffer_offset = 0 # in frames
def clear_buffer(self):
self.buffer_offset += len(self.audio_buffer)
self.audio_buffer = np.array([], dtype=np.float32)
def insert_audio_chunk(self, audio):
res = self.vac(audio)
self.audio_buffer = np.append(self.audio_buffer, audio)
if res is not None:
frame = list(res.values())[0] - self.buffer_offset
if "start" in res and "end" not in res:
self.status = "voice"
send_audio = self.audio_buffer[frame:]
self.online.init(
offset=(frame + self.buffer_offset) / self.SAMPLING_RATE
)
self.online.insert_audio_chunk(send_audio)
self.current_online_chunk_buffer_size += len(send_audio)
self.clear_buffer()
elif "end" in res and "start" not in res:
self.status = "nonvoice"
send_audio = self.audio_buffer[:frame]
self.online.insert_audio_chunk(send_audio)
self.current_online_chunk_buffer_size += len(send_audio)
self.is_currently_final = True
self.clear_buffer()
else:
beg = res["start"] - self.buffer_offset
end = res["end"] - self.buffer_offset
self.status = "nonvoice"
send_audio = self.audio_buffer[beg:end]
self.online.init(offset=(beg + self.buffer_offset) / self.SAMPLING_RATE)
self.online.insert_audio_chunk(send_audio)
self.current_online_chunk_buffer_size += len(send_audio)
self.is_currently_final = True
self.clear_buffer()
else:
if self.status == "voice":
self.online.insert_audio_chunk(self.audio_buffer)
self.current_online_chunk_buffer_size += len(self.audio_buffer)
self.clear_buffer()
else:
# We keep 1 second because VAD may later find start of voice in it.
# But we trim it to prevent OOM.
self.buffer_offset += max(
0, len(self.audio_buffer) - self.SAMPLING_RATE
)
self.audio_buffer = self.audio_buffer[-self.SAMPLING_RATE :]
def process_iter(self):
if self.is_currently_final:
return self.finish()
elif (
self.current_online_chunk_buffer_size
> self.SAMPLING_RATE * self.online_chunk_size
):
self.current_online_chunk_buffer_size = 0
ret = self.online.process_iter()
return ret
else:
logger.debug("no online update, only VAD")
return (None, None, "")
def finish(self):
ret = self.online.finish()
self.current_online_chunk_buffer_size = 0
self.is_currently_final = False
return ret
|