File size: 8,064 Bytes
faed9d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python3
import sys
import numpy as np
import librosa
from functools import lru_cache
import time
import logging
from .backends import FasterWhisperASR, MLXWhisper, WhisperTimestampedASR, OpenaiApiASR
from .online_asr import OnlineASRProcessor, VACOnlineASRProcessor

logger = logging.getLogger(__name__)



WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(
    ","
)


def create_tokenizer(lan):
    """returns an object that has split function that works like the one of MosesTokenizer"""

    assert (
        lan in WHISPER_LANG_CODES
    ), "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)

    if lan == "uk":
        import tokenize_uk

        class UkrainianTokenizer:
            def split(self, text):
                return tokenize_uk.tokenize_sents(text)

        return UkrainianTokenizer()

    # supported by fast-mosestokenizer
    if (
        lan
        in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split()
    ):
        from mosestokenizer import MosesSentenceSplitter        

        return MosesSentenceSplitter(lan)

    # the following languages are in Whisper, but not in wtpsplit:
    if (
        lan
        in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split()
    ):
        logger.debug(
            f"{lan} code is not supported by wtpsplit. Going to use None lang_code option."
        )
        lan = None

    from wtpsplit import WtP

    # downloads the model from huggingface on the first use
    wtp = WtP("wtp-canine-s-12l-no-adapters")

    class WtPtok:
        def split(self, sent):
            return wtp.split(sent, lang_code=lan)

    return WtPtok()


def add_shared_args(parser):
    """shared args for simulation (this entry point) and server

    parser: argparse.ArgumentParser object

    """
    parser.add_argument(
        "--min-chunk-size",
        type=float,
        default=1.0,
        help="Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.",
    )
    parser.add_argument(
        "--model",
        type=str,
        # default="large-v3-turbo",
        # choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large,large-v3-turbo".split(
        #     ","
        # ),
        help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.",
    )
    parser.add_argument(
        "--model_cache_dir",
        type=str,
        default=None,
        help="Overriding the default model cache dir where models downloaded from the hub are saved",
    )
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.",
    )
    parser.add_argument(
        "--lan",
        "--language",
        type=str,
        default="auto",
        help="Source language code, e.g. en,de,cs, or 'auto' for language detection.",
    )
    parser.add_argument(
        "--task",
        type=str,
        default="transcribe",
        choices=["transcribe", "translate"],
        help="Transcribe or translate.",
    )
    parser.add_argument(
        "--backend",
        type=str,
        default="faster-whisper",
        choices=["faster-whisper", "whisper_timestamped", "mlx-whisper", "openai-api"],
        help="Load only this backend for Whisper processing.",
    )
    parser.add_argument(
        "--vac",
        action="store_true",
        default=False,
        help="Use VAC = voice activity controller. Recommended. Requires torch.",
    )
    parser.add_argument(
        "--vac-chunk-size", type=float, default=0.04, help="VAC sample size in seconds."
    )
    parser.add_argument(
        "--vad",
        action="store_true",
        default=False,
        help="Use VAD = voice activity detection, with the default parameters.",
    )
    parser.add_argument(
        "--buffer_trimming",
        type=str,
        default="segment",
        choices=["sentence", "segment"],
        help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.',
    )
    parser.add_argument(
        "--buffer_trimming_sec",
        type=float,
        default=15,
        help="Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.",
    )
    parser.add_argument(
        "-l",
        "--log-level",
        dest="log_level",
        choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
        help="Set the log level",
        default="DEBUG",
    )

def backend_factory(args):
    backend = args.backend
    if backend == "openai-api":
        logger.debug("Using OpenAI API.")
        asr = OpenaiApiASR(lan=args.lan)
    else:
        if backend == "faster-whisper":
            asr_cls = FasterWhisperASR
        elif backend == "mlx-whisper":
            asr_cls = MLXWhisper
        else:
            asr_cls = WhisperTimestampedASR

        # Only for FasterWhisperASR and WhisperTimestampedASR
        size = args.model
        t = time.time()
        logger.info(f"Loading Whisper {size} model for {args.lan}...")
        asr = asr_cls(
            modelsize=size,
            lan=args.lan,
            cache_dir=args.model_cache_dir,
            model_dir=args.model_dir,
        )
        e = time.time()
        logger.info(f"done. It took {round(e-t,2)} seconds.")

    # Apply common configurations
    if getattr(args, "vad", False):  # Checks if VAD argument is present and True
        logger.info("Setting VAD filter")
        asr.use_vad()

    language = args.lan
    if args.task == "translate":
        asr.set_translate_task()
        tgt_language = "en"  # Whisper translates into English
    else:
        tgt_language = language  # Whisper transcribes in this language

    # Create the tokenizer
    if args.buffer_trimming == "sentence":

        tokenizer = create_tokenizer(tgt_language)
    else:
        tokenizer = None
    return asr, tokenizer

def online_factory(args, asr, tokenizer, logfile=sys.stderr):
    if args.vac:
        online = VACOnlineASRProcessor(
            args.min_chunk_size,
            asr,
            tokenizer,
            logfile=logfile,
            buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
        )
    else:
        online = OnlineASRProcessor(
            asr,
            tokenizer,
            logfile=logfile,
            buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
        )
    return online
  
def asr_factory(args, logfile=sys.stderr):
    """

    Creates and configures an ASR and ASR Online instance based on the specified backend and arguments.

    """
    asr, tokenizer = backend_factory(args)
    online = online_factory(args, asr, tokenizer, logfile=logfile)
    return asr, online

def set_logging(args, logger, others=[]):
    logging.basicConfig(format="%(levelname)s\t%(message)s")  # format='%(name)s
    logger.setLevel(args.log_level)

    for other in others:
        logging.getLogger(other).setLevel(args.log_level)