|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VADIterator:
|
|
def __init__(
|
|
self,
|
|
model,
|
|
threshold: float = 0.5,
|
|
sampling_rate: int = 16000,
|
|
min_silence_duration_ms: int = 500,
|
|
speech_pad_ms: int = 100,
|
|
):
|
|
"""
|
|
Class for stream imitation
|
|
|
|
Parameters
|
|
----------
|
|
model: preloaded .jit silero VAD model
|
|
|
|
threshold: float (default - 0.5)
|
|
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
|
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
|
|
|
sampling_rate: int (default - 16000)
|
|
Currently silero VAD models support 8000 and 16000 sample rates
|
|
|
|
min_silence_duration_ms: int (default - 100 milliseconds)
|
|
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
|
|
|
speech_pad_ms: int (default - 30 milliseconds)
|
|
Final speech chunks are padded by speech_pad_ms each side
|
|
"""
|
|
|
|
self.model = model
|
|
self.threshold = threshold
|
|
self.sampling_rate = sampling_rate
|
|
|
|
if sampling_rate not in [8000, 16000]:
|
|
raise ValueError(
|
|
"VADIterator does not support sampling rates other than [8000, 16000]"
|
|
)
|
|
|
|
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
|
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
|
self.reset_states()
|
|
|
|
def reset_states(self):
|
|
|
|
self.model.reset_states()
|
|
self.triggered = False
|
|
self.temp_end = 0
|
|
self.current_sample = 0
|
|
|
|
def __call__(self, x, return_seconds=False):
|
|
"""
|
|
x: torch.Tensor
|
|
audio chunk (see examples in repo)
|
|
|
|
return_seconds: bool (default - False)
|
|
whether return timestamps in seconds (default - samples)
|
|
"""
|
|
|
|
if not torch.is_tensor(x):
|
|
try:
|
|
x = torch.Tensor(x)
|
|
except:
|
|
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
|
|
|
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
|
self.current_sample += window_size_samples
|
|
|
|
speech_prob = self.model(x, self.sampling_rate).item()
|
|
|
|
if (speech_prob >= self.threshold) and self.temp_end:
|
|
self.temp_end = 0
|
|
|
|
if (speech_prob >= self.threshold) and not self.triggered:
|
|
self.triggered = True
|
|
speech_start = self.current_sample - self.speech_pad_samples
|
|
return {
|
|
"start": (
|
|
int(speech_start)
|
|
if not return_seconds
|
|
else round(speech_start / self.sampling_rate, 1)
|
|
)
|
|
}
|
|
|
|
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
|
if not self.temp_end:
|
|
self.temp_end = self.current_sample
|
|
if self.current_sample - self.temp_end < self.min_silence_samples:
|
|
return None
|
|
else:
|
|
speech_end = self.temp_end + self.speech_pad_samples
|
|
self.temp_end = 0
|
|
self.triggered = False
|
|
return {
|
|
"end": (
|
|
int(speech_end)
|
|
if not return_seconds
|
|
else round(speech_end / self.sampling_rate, 1)
|
|
)
|
|
}
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
class FixedVADIterator(VADIterator):
|
|
"""It fixes VADIterator by allowing to process any audio length, not only exactly 512 frames at once.
|
|
If audio to be processed at once is long and multiple voiced segments detected,
|
|
then __call__ returns the start of the first segment, and end (or middle, which means no end) of the last segment.
|
|
"""
|
|
|
|
def reset_states(self):
|
|
super().reset_states()
|
|
self.buffer = np.array([], dtype=np.float32)
|
|
|
|
def __call__(self, x, return_seconds=False):
|
|
self.buffer = np.append(self.buffer, x)
|
|
ret = None
|
|
while len(self.buffer) >= 512:
|
|
r = super().__call__(self.buffer[:512], return_seconds=return_seconds)
|
|
self.buffer = self.buffer[512:]
|
|
if ret is None:
|
|
ret = r
|
|
elif r is not None:
|
|
if "end" in r:
|
|
ret["end"] = r["end"]
|
|
if "start" in r and "end" in ret:
|
|
|
|
del ret["end"]
|
|
return ret if ret != {} else None
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
import torch
|
|
|
|
model, _ = torch.hub.load(repo_or_dir="snakers4/silero-vad", model="silero_vad")
|
|
vac = FixedVADIterator(model)
|
|
|
|
|
|
|
|
audio_buffer = np.array([0] * (512), dtype=np.float32)
|
|
vac(audio_buffer)
|
|
|
|
|
|
|
|
audio_buffer = np.array([0] * (512 - 1), dtype=np.float32)
|
|
vac(audio_buffer)
|
|
|