import gradio as gr import torch from PIL import Image as PILImage from transformers import AutoImageProcessor, SiglipForImageClassification import os import warnings # --- Configuration --- MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # --- Suppress specific warnings --- warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.") warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*") # --- Load Model and Processor (Load once at startup) --- print(f"Using device: {DEVICE}") print(f"Loading processor from: {MODEL_IDENTIFIER}") try: processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER) print(f"Loading model from: {MODEL_IDENTIFIER}") model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER) model.to(DEVICE) model.eval() print("Model and processor loaded successfully.") except Exception as e: print(f"FATAL: Error loading model or processor: {e}") raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e # --- Prediction Function --- def classify_image(image_pil): if image_pil is None: print("Warning: No image provided.") return {} print("Processing image...") try: image = image_pil.convert("RGB") inputs = processor(images=image, return_tensors="pt").to(DEVICE) print("Running inference...") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=-1)[0] results = {} for i, prob in enumerate(probabilities): label = model.config.id2label[i] results[label] = round(prob.item(), 4) print(f"Prediction results: {results}") return results except Exception as e: print(f"Error during prediction: {e}") return {"Error": f"Processing failed. Please try again or use a different image."} # --- Define Example Images --- example_dir = "examples" example_images = [] if os.path.exists(example_dir) and os.listdir(example_dir): for img_name in os.listdir(example_dir): if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')): example_images.append(os.path.join(example_dir, img_name)) if example_images: print(f"Found examples: {example_images}") else: print("No valid image files found in 'examples' directory.") else: print("No 'examples' directory found or it's empty. Examples will not be shown.") # --- Custom CSS for Dark Theme Adjustments --- # Minimal CSS - let the dark theme handle most things css = """ body { font-family: 'Inter', sans-serif; } /* Style the main title */ #app-title { text-align: center; font-weight: bold; font-size: 2.5em; margin-bottom: 5px; /* color removed - let theme handle */ } /* Style the description */ #app-description { text-align: center; font-size: 1.1em; margin-bottom: 25px; /* color removed - let theme handle */ } #app-description code { /* Style model name - theme might handle this, but can force */ font-weight: bold; background-color: rgba(255, 255, 255, 0.1); /* Slightly lighter background for code */ padding: 2px 5px; border-radius: 4px; color: #c5f7dc; /* Light green text for code block */ } #app-description strong { /* Style device name */ color: #2dd4bf; /* Brighter teal/emerald for dark theme */ font-weight: bold; } /* Style the results heading */ #results-heading { text-align: center; font-size: 1.2em; margin-bottom: 10px; /* color removed - let theme handle */ } /* Add some definition to input/output columns if needed */ #input-column, #output-column { border: 1px solid #4b5563; /* Darker border for dark theme */ border-radius: 12px; padding: 20px; box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); /* Subtle shadow, works on dark too */ /* background-color removed - let theme handle */ } /* Ensure label text inside columns is readable */ #prediction-label .label-name { font-weight: bold; font-size: 1.1em; } #prediction-label .confidence { font-size: 1em; } /* Footer styling */ #app-footer { margin-top: 40px; padding-top: 20px; border-top: 1px solid #374151; /* Darker border for footer */ text-align: center; font-size: 0.9em; /* color removed - let theme handle */ } #app-footer a { color: #60a5fa; /* Lighter blue for links */ text-decoration: none; } #app-footer a:hover { text-decoration: underline; } """ # --- Gradio Interface using Blocks and Theme --- # Use the theme string identifier for the dark mode variant # Other options: "default/dark", "monochrome/dark", "glass/dark" with gr.Blocks(theme="soft/dark", css=css) as iface: # <<< CHANGE IS HERE # Title and Description gr.Markdown("# AI vs Human Image Detector", elem_id="app-title") gr.Markdown( f"Upload an image to classify if it was likely generated by AI or created by a human. " f"Uses the `{MODEL_IDENTIFIER}` model. Running on **{str(DEVICE).upper()}**.", elem_id="app-description" ) # Main layout with gr.Row(variant='panel'): with gr.Column(scale=1, min_width=300, elem_id="input-column"): image_input = gr.Image( type="pil", label="🖼️ Upload Your Image", sources=["upload", "webcam", "clipboard"], height=400, ) submit_button = gr.Button("🔍 Classify Image", variant="primary") with gr.Column(scale=1, min_width=300, elem_id="output-column"): gr.Markdown("📊 **Prediction Results**", elem_id="results-heading") result_output = gr.Label( num_top_classes=2, label="Classification", elem_id="prediction-label" ) # Examples Section if example_images: gr.Examples( examples=example_images, inputs=image_input, outputs=result_output, fn=classify_image, cache_examples=True, label="✨ Click an Example to Try!" ) # Footer / Article section gr.Markdown(f""" --- **How it Works:** This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans. **Model:** * You can find the model card here: {MODEL_IDENTIFIER} **Training Code:** Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/). """, elem_id="app-footer" ) # Connect events submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_button") image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_change") # --- Launch the App --- if __name__ == "__main__": print("Launching Gradio interface...") iface.launch() print("Gradio interface launched.")