Spaces:
Runtime error
Runtime error
File size: 14,159 Bytes
ac7cda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import copy
import random
import numpy as np
from scipy.special import softmax
from ..models.stitch_network import StitchNetwork
"""
# __init__
stitch_network_cfg = {
"model_path": "",
"device": "cuda",
}
# __call__
kwargs:
fade_alpha
fade_out_keys
delta_pitch
delta_yaw
delta_roll
"""
def ctrl_motion(x_d_info, **kwargs):
# pose + offset
for kk in ["delta_pitch", "delta_yaw", "delta_roll"]:
if kk in kwargs:
k = kk[6:]
x_d_info[k] = bin66_to_degree(x_d_info[k]) + kwargs[kk]
# pose * alpha
for kk in ["alpha_pitch", "alpha_yaw", "alpha_roll"]:
if kk in kwargs:
k = kk[6:]
x_d_info[k] = x_d_info[k] * kwargs[kk]
# exp + offset
if "delta_exp" in kwargs:
k = "exp"
x_d_info[k] = x_d_info[k] + kwargs["delta_exp"]
return x_d_info
def fade(x_d_info, dst, alpha, keys=None):
if keys is None:
keys = x_d_info.keys()
for k in keys:
if k == 'kp':
continue
x_d_info[k] = x_d_info[k] * alpha + dst[k] * (1 - alpha)
return x_d_info
def ctrl_vad(x_d_info, dst, alpha):
exp = x_d_info["exp"]
exp_dst = dst["exp"]
_lip = [6, 12, 14, 17, 19, 20]
_a1 = np.zeros((21, 3), dtype=np.float32)
_a1[_lip] = alpha
_a1 = _a1.reshape(1, -1)
x_d_info["exp"] = exp * alpha + exp_dst * (1 - alpha)
return x_d_info
def _mix_s_d_info(
x_s_info,
x_d_info,
use_d_keys=("exp", "pitch", "yaw", "roll", "t"),
d0=None,
):
if d0 is not None:
if isinstance(use_d_keys, dict):
x_d_info = {
k: x_s_info[k] + (v - d0[k]) * use_d_keys.get(k, 1)
for k, v in x_d_info.items()
}
else:
x_d_info = {k: x_s_info[k] + (v - d0[k]) for k, v in x_d_info.items()}
for k, v in x_s_info.items():
if k not in x_d_info or k not in use_d_keys:
x_d_info[k] = v
if isinstance(use_d_keys, dict) and d0 is None:
for k, alpha in use_d_keys.items():
x_d_info[k] *= alpha
return x_d_info
def _set_eye_blink_idx(N, blink_n=15, open_n=-1):
"""
open_n:
-1: no blink
0: random open_n
>0: fix open_n
list: loop open_n
"""
OPEN_MIN = 60
OPEN_MAX = 100
idx = [0] * N
if isinstance(open_n, int):
if open_n < 0: # no blink
return idx
elif open_n > 0: # fix open_n
open_ns = [open_n]
else: # open_n == 0: # random open_n, 60-100
open_ns = []
elif isinstance(open_n, list):
open_ns = open_n # loop open_n
else:
raise ValueError()
blink_idx = list(range(blink_n))
start_n = open_ns[0] if open_ns else random.randint(OPEN_MIN, OPEN_MAX)
end_n = open_ns[-1] if open_ns else random.randint(OPEN_MIN, OPEN_MAX)
max_i = N - max(end_n, blink_n)
cur_i = start_n
cur_n_i = 1
while cur_i < max_i:
idx[cur_i : cur_i + blink_n] = blink_idx
if open_ns:
cur_n = open_ns[cur_n_i % len(open_ns)]
cur_n_i += 1
else:
cur_n = random.randint(OPEN_MIN, OPEN_MAX)
cur_i = cur_i + blink_n + cur_n
return idx
def _fix_exp_for_x_d_info(x_d_info, x_s_info, delta_eye=None, drive_eye=True):
_eye = [11, 13, 15, 16, 18]
_lip = [6, 12, 14, 17, 19, 20]
alpha = np.zeros((21, 3), dtype=x_d_info["exp"].dtype)
alpha[_lip] = 1
if delta_eye is None and drive_eye: # use d eye
alpha[_eye] = 1
alpha = alpha.reshape(1, -1)
x_d_info["exp"] = x_d_info["exp"] * alpha + x_s_info["exp"] * (1 - alpha)
if delta_eye is not None and drive_eye:
alpha = np.zeros((21, 3), dtype=x_d_info["exp"].dtype)
alpha[_eye] = 1
alpha = alpha.reshape(1, -1)
x_d_info["exp"] = (delta_eye + x_s_info["exp"]) * alpha + x_d_info["exp"] * (
1 - alpha
)
return x_d_info
def _fix_exp_for_x_d_info_v2(x_d_info, x_s_info, delta_eye, a1, a2, a3):
x_d_info["exp"] = x_d_info["exp"] * a1 + x_s_info["exp"] * a2 + delta_eye * a3
return x_d_info
def bin66_to_degree(pred):
if pred.ndim > 1 and pred.shape[1] == 66:
idx = np.arange(66).astype(np.float32)
pred = softmax(pred, axis=1)
degree = np.sum(pred * idx, axis=1) * 3 - 97.5
return degree
return pred
def _eye_delta(exp, dx=0, dy=0):
if dx > 0:
exp[0, 33] += dx * 0.0007
exp[0, 45] += dx * 0.001
else:
exp[0, 33] += dx * 0.001
exp[0, 45] += dx * 0.0007
exp[0, 34] += dy * -0.001
exp[0, 46] += dy * -0.001
return exp
def _fix_gaze(pose_s, x_d_info):
x_ratio = 0.26
y_ratio = 0.28
yaw_s, pitch_s = pose_s
yaw_d = bin66_to_degree(x_d_info['yaw']).item()
pitch_d = bin66_to_degree(x_d_info['pitch']).item()
delta_yaw = yaw_d - yaw_s
delta_pitch = pitch_d - pitch_s
dx = delta_yaw * x_ratio
dy = delta_pitch * y_ratio
x_d_info['exp'] = _eye_delta(x_d_info['exp'], dx, dy)
return x_d_info
def get_rotation_matrix(pitch_, yaw_, roll_):
""" the input is in degree
"""
# transform to radian
pitch = pitch_ / 180 * np.pi
yaw = yaw_ / 180 * np.pi
roll = roll_ / 180 * np.pi
if pitch.ndim == 1:
pitch = pitch[:, None]
if yaw.ndim == 1:
yaw = yaw[:, None]
if roll.ndim == 1:
roll = roll[:, None]
# calculate the euler matrix
bs = pitch.shape[0]
ones = np.ones((bs, 1), dtype=np.float32)
zeros = np.zeros((bs, 1), dtype=np.float32)
x, y, z = pitch, yaw, roll
rot_x = np.concatenate([
ones, zeros, zeros,
zeros, np.cos(x), -np.sin(x),
zeros, np.sin(x), np.cos(x)
], axis=1).reshape(bs, 3, 3)
rot_y = np.concatenate([
np.cos(y), zeros, np.sin(y),
zeros, ones, zeros,
-np.sin(y), zeros, np.cos(y)
], axis=1).reshape(bs, 3, 3)
rot_z = np.concatenate([
np.cos(z), -np.sin(z), zeros,
np.sin(z), np.cos(z), zeros,
zeros, zeros, ones
], axis=1).reshape(bs, 3, 3)
rot = np.matmul(np.matmul(rot_z, rot_y), rot_x)
return np.transpose(rot, (0, 2, 1))
def transform_keypoint(kp_info: dict):
"""
transform the implicit keypoints with the pose, shift, and expression deformation
kp: BxNx3
"""
kp = kp_info['kp'] # (bs, k, 3)
pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
t, exp = kp_info['t'], kp_info['exp']
scale = kp_info['scale']
pitch = bin66_to_degree(pitch)
yaw = bin66_to_degree(yaw)
roll = bin66_to_degree(roll)
bs = kp.shape[0]
if kp.ndim == 2:
num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
else:
num_kp = kp.shape[1] # Bxnum_kpx3
rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
# Eqn.2: s * (R * x_c,s + exp) + t
kp_transformed = np.matmul(kp.reshape(bs, num_kp, 3), rot_mat) + exp.reshape(bs, num_kp, 3)
kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
return kp_transformed
class MotionStitch:
def __init__(
self,
stitch_network_cfg,
):
self.stitch_net = StitchNetwork(**stitch_network_cfg)
def set_Nd(self, N_d=-1):
# only for offline (make start|end eye open)
if N_d == self.N_d:
return
self.N_d = N_d
if self.drive_eye and self.delta_eye_arr is not None:
N = 3000 if self.N_d == -1 else self.N_d
self.delta_eye_idx_list = _set_eye_blink_idx(
N, len(self.delta_eye_arr), self.delta_eye_open_n
)
def setup(
self,
N_d=-1,
use_d_keys=None,
relative_d=True,
drive_eye=None, # use d eye or s eye
delta_eye_arr=None, # fix eye
delta_eye_open_n=-1, # int|list
fade_out_keys=("exp",),
fade_type="", # "" | "d0" | "s"
flag_stitching=True,
is_image_flag=True,
x_s_info=None,
d0=None,
ch_info=None,
overall_ctrl_info=None,
):
self.is_image_flag = is_image_flag
if use_d_keys is None:
if self.is_image_flag:
self.use_d_keys = ("exp", "pitch", "yaw", "roll", "t")
else:
self.use_d_keys = ("exp", )
else:
self.use_d_keys = use_d_keys
if drive_eye is None:
if self.is_image_flag:
self.drive_eye = True
else:
self.drive_eye = False
else:
self.drive_eye = drive_eye
self.N_d = N_d
self.relative_d = relative_d
self.delta_eye_arr = delta_eye_arr
self.delta_eye_open_n = delta_eye_open_n
self.fade_out_keys = fade_out_keys
self.fade_type = fade_type
self.flag_stitching = flag_stitching
_eye = [11, 13, 15, 16, 18]
_lip = [6, 12, 14, 17, 19, 20]
_a1 = np.zeros((21, 3), dtype=np.float32)
_a1[_lip] = 1
_a2 = 0
if self.drive_eye:
if self.delta_eye_arr is None:
_a1[_eye] = 1
else:
_a2 = np.zeros((21, 3), dtype=np.float32)
_a2[_eye] = 1
_a2 = _a2.reshape(1, -1)
_a1 = _a1.reshape(1, -1)
self.fix_exp_a1 = _a1 * (1 - _a2)
self.fix_exp_a2 = (1 - _a1) + _a1 * _a2
self.fix_exp_a3 = _a2
if self.drive_eye and self.delta_eye_arr is not None:
N = 3000 if self.N_d == -1 else self.N_d
self.delta_eye_idx_list = _set_eye_blink_idx(
N, len(self.delta_eye_arr), self.delta_eye_open_n
)
self.pose_s = None
self.x_s = None
self.fade_dst = None
if self.is_image_flag and x_s_info is not None:
yaw_s = bin66_to_degree(x_s_info['yaw']).item()
pitch_s = bin66_to_degree(x_s_info['pitch']).item()
self.pose_s = [yaw_s, pitch_s]
self.x_s = transform_keypoint(x_s_info)
if self.fade_type == "s":
self.fade_dst = copy.deepcopy(x_s_info)
if ch_info is not None:
self.scale_a = ch_info['x_s_info_lst'][0]['scale'].item()
if x_s_info is not None:
self.scale_b = x_s_info['scale'].item()
self.scale_ratio = self.scale_a / self.scale_b
self._set_scale_ratio(self.scale_ratio)
else:
self.scale_ratio = None
else:
self.scale_ratio = 1
self.overall_ctrl_info = overall_ctrl_info
self.d0 = d0
self.idx = 0
def _set_scale_ratio(self, scale_ratio=1):
if scale_ratio == 1:
return
if isinstance(self.use_d_keys, dict):
self.use_d_keys = {k: v * (scale_ratio if k in {"exp", "pitch", "yaw", "roll"} else 1) for k, v in self.use_d_keys.items()}
else:
self.use_d_keys = {k: scale_ratio if k in {"exp", "pitch", "yaw", "roll"} else 1 for k in self.use_d_keys}
@staticmethod
def _merge_kwargs(default_kwargs, run_kwargs):
if default_kwargs is None:
return run_kwargs
for k, v in default_kwargs.items():
if k not in run_kwargs:
run_kwargs[k] = v
return run_kwargs
def __call__(self, x_s_info, x_d_info, **kwargs):
# return x_s, x_d
kwargs = self._merge_kwargs(self.overall_ctrl_info, kwargs)
if self.scale_ratio is None:
self.scale_b = x_s_info['scale'].item()
self.scale_ratio = self.scale_a / self.scale_b
self._set_scale_ratio(self.scale_ratio)
if self.relative_d and self.d0 is None:
self.d0 = copy.deepcopy(x_d_info)
x_d_info = _mix_s_d_info(
x_s_info,
x_d_info,
self.use_d_keys,
self.d0,
)
delta_eye = 0
if self.drive_eye and self.delta_eye_arr is not None:
delta_eye = self.delta_eye_arr[
self.delta_eye_idx_list[self.idx % len(self.delta_eye_idx_list)]
][None]
x_d_info = _fix_exp_for_x_d_info_v2(
x_d_info,
x_s_info,
delta_eye,
self.fix_exp_a1,
self.fix_exp_a2,
self.fix_exp_a3,
)
if kwargs.get("vad_alpha", 1) < 1:
x_d_info = ctrl_vad(x_d_info, x_s_info, kwargs.get("vad_alpha", 1))
x_d_info = ctrl_motion(x_d_info, **kwargs)
if self.fade_type == "d0" and self.fade_dst is None:
self.fade_dst = copy.deepcopy(x_d_info)
# fade
if "fade_alpha" in kwargs and self.fade_type in ["d0", "s"]:
fade_alpha = kwargs["fade_alpha"]
fade_keys = kwargs.get("fade_out_keys", self.fade_out_keys)
if self.fade_type == "d0":
fade_dst = self.fade_dst
elif self.fade_type == "s":
if self.fade_dst is not None:
fade_dst = self.fade_dst
else:
fade_dst = copy.deepcopy(x_s_info)
if self.is_image_flag:
self.fade_dst = fade_dst
x_d_info = fade(x_d_info, fade_dst, fade_alpha, fade_keys)
if self.drive_eye:
if self.pose_s is None:
yaw_s = bin66_to_degree(x_s_info['yaw']).item()
pitch_s = bin66_to_degree(x_s_info['pitch']).item()
self.pose_s = [yaw_s, pitch_s]
x_d_info = _fix_gaze(self.pose_s, x_d_info)
if self.x_s is not None:
x_s = self.x_s
else:
x_s = transform_keypoint(x_s_info)
if self.is_image_flag:
self.x_s = x_s
x_d = transform_keypoint(x_d_info)
if self.flag_stitching:
x_d = self.stitch_net(x_s, x_d)
self.idx += 1
return x_s, x_d
|