File size: 5,068 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import torch
from ..utils.load_model import load_model


def make_beta(n_timestep, cosine_s=8e-3):
    timesteps = (
        torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
    )
    alphas = timesteps / (1 + cosine_s) * np.pi / 2
    alphas = torch.cos(alphas).pow(2)
    alphas = alphas / alphas[0]
    betas = 1 - alphas[1:] / alphas[:-1]
    betas = np.clip(betas, a_min=0, a_max=0.999)
    return betas.numpy()


class LMDM:
    def __init__(self, model_path, device="cuda", **kwargs):
        kwargs["module_name"] = "LMDM"

        self.model, self.model_type = load_model(model_path, device=device, **kwargs)
        self.device = device

        self.motion_feat_dim = kwargs.get("motion_feat_dim", 265)
        self.audio_feat_dim = kwargs.get("audio_feat_dim", 1024+35)
        self.seq_frames = kwargs.get("seq_frames", 80)

        if self.model_type == "pytorch":
            pass
        else:
            self._init_np()

    def setup(self, sampling_timesteps):
        if self.model_type == "pytorch":
            self.model.setup(sampling_timesteps)
        else:
            self._setup_np(sampling_timesteps)

    def _init_np(self):
        self.sampling_timesteps = None
        self.n_timestep = 1000

        betas = torch.Tensor(make_beta(n_timestep=self.n_timestep))
        alphas = 1.0 - betas
        self.alphas_cumprod = torch.cumprod(alphas, axis=0).cpu().numpy()

    def _setup_np(self, sampling_timesteps=50):
        if self.sampling_timesteps == sampling_timesteps:
            return
        
        self.sampling_timesteps = sampling_timesteps

        total_timesteps = self.n_timestep
        eta = 1
        shape = (1, self.seq_frames, self.motion_feat_dim)

        times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)   # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
        times = list(reversed(times.int().tolist()))
        self.time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]

        self.time_cond_list = []
        self.alpha_next_sqrt_list = []
        self.sigma_list = []
        self.c_list = []
        self.noise_list = []

        for time, time_next in self.time_pairs:
            time_cond = np.full((1,), time, dtype=np.int64)
            self.time_cond_list.append(time_cond)
            if time_next < 0:
                continue

            alpha = self.alphas_cumprod[time]
            alpha_next = self.alphas_cumprod[time_next]

            sigma = eta * np.sqrt((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha))
            c = np.sqrt(1 - alpha_next - sigma ** 2)
            noise = np.random.randn(*shape).astype(np.float32)
            
            self.alpha_next_sqrt_list.append(np.sqrt(alpha_next))
            self.sigma_list.append(sigma)
            self.c_list.append(c)
            self.noise_list.append(noise)

    def _one_step(self, x, cond_frame, cond, time_cond):
        if self.model_type == "onnx":
            pred = self.model.run(None, {"x": x, "cond_frame": cond_frame, "cond": cond, "time_cond": time_cond})
            pred_noise, x_start = pred[0], pred[1]
        elif self.model_type == "tensorrt":
            self.model.setup({"x": x, "cond_frame": cond_frame, "cond": cond, "time_cond": time_cond})
            self.model.infer()
            pred_noise, x_start = self.model.buffer["pred_noise"][0], self.model.buffer["x_start"][0]
        elif self.model_type == "pytorch":
            with torch.no_grad():
                pred_noise, x_start = self.model(x, cond_frame, cond, time_cond)
        else:
            raise ValueError(f"Unsupported model type: {self.model_type}")
        
        return pred_noise, x_start

    def _call_np(self, kp_cond, aud_cond, sampling_timesteps):
        self._setup_np(sampling_timesteps)

        cond_frame = kp_cond
        cond = aud_cond

        x = np.random.randn(1, self.seq_frames, self.motion_feat_dim).astype(np.float32)

        x_start = None
        i = 0
        for _, time_next in self.time_pairs:
            time_cond = self.time_cond_list[i]
            pred_noise, x_start = self._one_step(x, cond_frame, cond, time_cond)
            if time_next < 0:
                x = x_start
                continue

            alpha_next_sqrt = self.alpha_next_sqrt_list[i]
            c = self.c_list[i]
            sigma = self.sigma_list[i]
            noise = self.noise_list[i]
            x = x_start * alpha_next_sqrt + c * pred_noise + sigma * noise

            i += 1

        return x

    def __call__(self, kp_cond, aud_cond, sampling_timesteps):
        if self.model_type == "pytorch":
            pred_kp_seq = self.model.ddim_sample(
                torch.from_numpy(kp_cond).to(self.device), 
                torch.from_numpy(aud_cond).to(self.device), 
                sampling_timesteps,
            ).cpu().numpy()
        else:
            pred_kp_seq = self._call_np(kp_cond, aud_cond, sampling_timesteps)
        return pred_kp_seq