File size: 5,225 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Latent Motion Diffusion Model
import torch
import torch.nn as nn
from .lmdm_modules.model import MotionDecoder
from .lmdm_modules.utils import extract, make_beta_schedule


class LMDM(nn.Module):
    def __init__(
        self,
        motion_feat_dim=265,
        audio_feat_dim=1024+35,
        seq_frames=80,
        checkpoint='',
        device='cuda',
        clip_denoised=False,    # clip denoised (-1,1)
        multi_cond_frame=False,
    ):
        super().__init__()

        self.motion_feat_dim = motion_feat_dim
        self.audio_feat_dim = audio_feat_dim
        self.seq_frames = seq_frames
        self.device = device

        self.n_timestep = 1000
        self.clip_denoised = clip_denoised
        self.guidance_weight = 2

        self.model = MotionDecoder(
            nfeats=motion_feat_dim,
            seq_len=seq_frames,
            latent_dim=512,
            ff_size=1024,
            num_layers=8,
            num_heads=8,
            dropout=0.1,
            cond_feature_dim=audio_feat_dim,
            multi_cond_frame=multi_cond_frame,
        )

        self.init_diff()

        self.sampling_timesteps = None

    def init_diff(self):
        n_timestep = self.n_timestep
        betas = torch.Tensor(
            make_beta_schedule(schedule="cosine", n_timestep=n_timestep)
        )
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)

        self.register_buffer("alphas_cumprod", alphas_cumprod)
        self.register_buffer(
            "sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1)
        )
        self.register_buffer("sqrt_recip1m_alphas_cumprod", torch.sqrt(1.0 / (1.0 - alphas_cumprod)))

    def predict_noise_from_start(self, x_t, t, x0):
        a = extract(self.sqrt_recip1m_alphas_cumprod, t, x_t.shape)
        b = extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
        return (a * x_t - x0 / b)
    
    def maybe_clip(self, x):
        if self.clip_denoised:
            return torch.clamp(x, min=-1., max=1.)
        else:
            return x
        
    def model_predictions(self, x, cond_frame, cond, t):
        weight = self.guidance_weight
        x_start = self.model.guided_forward(x, cond_frame, cond, t, weight)
        x_start = self.maybe_clip(x_start)
        pred_noise = self.predict_noise_from_start(x, t, x_start)
        return pred_noise, x_start
    
    @torch.no_grad()
    def forward(self, x, cond_frame, cond, time_cond):
        pred_noise, x_start = self.model_predictions(x, cond_frame, cond, time_cond)
        return pred_noise, x_start
    
    def load_model(self, ckpt_path):
        checkpoint = torch.load(ckpt_path, map_location='cpu')
        self.model.load_state_dict(checkpoint["model_state_dict"])
        self.eval()
        return self

    def setup(self, sampling_timesteps=50):
        if self.sampling_timesteps == sampling_timesteps:
            return
        
        self.sampling_timesteps = sampling_timesteps

        total_timesteps = self.n_timestep
        device = self.device
        eta = 1
        shape = (1, self.seq_frames, self.motion_feat_dim)

        times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)   # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
        times = list(reversed(times.int().tolist()))
        self.time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]

        self.time_cond_list = []
        self.alpha_next_sqrt_list = []
        self.sigma_list = []
        self.c_list = []
        self.noise_list = []

        for time, time_next in self.time_pairs:
            time_cond = torch.full((1,), time, device=device, dtype=torch.long)
            self.time_cond_list.append(time_cond)
            if time_next < 0:
                continue
            alpha = self.alphas_cumprod[time]
            alpha_next = self.alphas_cumprod[time_next]

            sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
            c = (1 - alpha_next - sigma ** 2).sqrt()
            noise = torch.randn(shape, device=device)

            self.alpha_next_sqrt_list.append(alpha_next.sqrt())
            self.sigma_list.append(sigma)
            self.c_list.append(c)
            self.noise_list.append(noise)

    @torch.no_grad()
    def ddim_sample(self, kp_cond, aud_cond, sampling_timesteps):
        self.setup(sampling_timesteps)

        cond_frame = kp_cond
        cond = aud_cond

        shape = (1, self.seq_frames, self.motion_feat_dim)
        x = torch.randn(shape, device=self.device)

        x_start = None
        i = 0
        for _, time_next in self.time_pairs:
            time_cond = self.time_cond_list[i]
            pred_noise, x_start = self.model_predictions(x, cond_frame, cond, time_cond)
            if time_next < 0:
                x = x_start
                continue

            alpha_next_sqrt = self.alpha_next_sqrt_list[i]
            c = self.c_list[i]
            sigma = self.sigma_list[i]
            noise = self.noise_list[i]
            x = x_start * alpha_next_sqrt + c * pred_noise + sigma * noise

            i += 1
        return x  # pred_kp_seq