File size: 5,984 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
from scipy.special import softmax
import copy


def _get_emo_avg(idx=6):
    emo_avg = np.zeros(8, dtype=np.float32)
    if isinstance(idx, (list, tuple)):
        for i in idx:
            emo_avg[i] = 8
    else:
        emo_avg[idx] = 8
    emo_avg = softmax(emo_avg)
    #emo_avg = None
    # 'Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise', 'Contempt'
    return emo_avg


def _mirror_index(index, size):
    turn = index // size
    res = index % size
    if turn % 2 == 0:
        return res
    else:
        return size - res - 1
    

class ConditionHandler:
    """
    aud_feat, emo_seq, eye_seq, sc_seq -> cond_seq
    """
    def __init__(
        self,
        use_emo=True,
        use_sc=True,
        use_eye_open=True,
        use_eye_ball=True,
        seq_frames=80,
    ):
        self.use_emo = use_emo
        self.use_sc = use_sc
        self.use_eye_open = use_eye_open
        self.use_eye_ball = use_eye_ball

        self.seq_frames = seq_frames

    def setup(self, setup_info, emo, eye_f0_mode=False, ch_info=None):
        """
        emo: int | [int] | [[int]] | numpy
        """
        if ch_info is None:
            source_info = copy.deepcopy(setup_info)
        else:
            source_info = ch_info

        self.eye_f0_mode = eye_f0_mode
        self.x_s_info_0 = source_info['x_s_info_lst'][0]

        if self.use_sc:
            self.sc = source_info["sc"]    # 63
            self.sc_seq = np.stack([self.sc] * self.seq_frames, 0)
        
        if self.use_eye_open:
            self.eye_open_lst = np.concatenate(source_info["eye_open_lst"], 0)  # [n, 2]
            self.num_eye_open = len(self.eye_open_lst)
            if self.num_eye_open == 1 or self.eye_f0_mode:
                self.eye_open_seq = np.stack([self.eye_open_lst[0]] * self.seq_frames, 0)
            else:
                self.eye_open_seq = None
        
        if self.use_eye_ball:
            self.eye_ball_lst = np.concatenate(source_info["eye_ball_lst"], 0)  # [n, 6]
            self.num_eye_ball = len(self.eye_ball_lst)
            if self.num_eye_ball == 1 or self.eye_f0_mode:
                self.eye_ball_seq = np.stack([self.eye_ball_lst[0]] * self.seq_frames, 0)
            else:
                self.eye_ball_seq = None

        if self.use_emo:
            self.emo_lst = self._parse_emo_seq(emo)
            self.num_emo = len(self.emo_lst)
            if self.num_emo == 1:
                self.emo_seq = np.concatenate([self.emo_lst] * self.seq_frames, 0)
            else:
                self.emo_seq = None

    @staticmethod
    def _parse_emo_seq(emo, seq_len=-1):
        if isinstance(emo, np.ndarray) and emo.ndim == 2 and emo.shape[1] == 8:
            # emo arr, e.g. real
            emo_seq = emo   # [m, 8]
        elif isinstance(emo, int) and 0 <= emo < 8:
            # emo label, e.g. 4
            emo_seq = _get_emo_avg(emo).reshape(1, 8)    # [1, 8]
        elif isinstance(emo, (list, tuple)) and 0 < len(emo) < 8 and isinstance(emo[0], int):
            # emo labels, e.g. [3,4]
            emo_seq = _get_emo_avg(emo).reshape(1, 8)    # [1, 8]
        elif isinstance(emo, list) and emo and isinstance(emo[0], (list, tuple)):
            # emo label list, e.g. [[4], [3,4], [3],[3,4,5], ...]
            emo_seq = np.stack([_get_emo_avg(i) for i in emo], 0)    # [m, 8]
        else:
            raise ValueError(f"Unsupported emo type: {emo}")
    
        if seq_len > 0:
            if len(emo_seq) == seq_len:
                return emo_seq
            elif len(emo_seq) == 1:
                return np.concatenate([emo_seq] * seq_len, 0)
            elif len(emo_seq) > seq_len:
                return emo_seq[:seq_len]
            else:
                raise ValueError(f"emo len {len(emo_seq)} can not match seq len ({seq_len})")
        else:
            return emo_seq
        
    def __call__(self, aud_feat, idx, emo=None):
        """
        aud_feat: [n, 1024]
        idx: int, <0 means pad (first clip buffer)
        """

        frame_num = len(aud_feat)
        more_cond = [aud_feat]
        if self.use_emo:
            if emo is not None:
                emo_seq = self._parse_emo_seq(emo, frame_num)
            elif self.emo_seq is not None and len(self.emo_seq) == frame_num:
                emo_seq = self.emo_seq
            else:
                emo_idx_list = [max(i, 0) % self.num_emo for i in range(idx, idx + frame_num)]
                emo_seq = self.emo_lst[emo_idx_list]
            more_cond.append(emo_seq)

        if self.use_eye_open:
            if self.eye_open_seq is not None and len(self.eye_open_seq) == frame_num:
                eye_open_seq = self.eye_open_seq
            else:
                if self.eye_f0_mode:
                    eye_idx_list = [0] * frame_num
                else:
                    eye_idx_list = [_mirror_index(max(i, 0), self.num_eye_open) for i in range(idx, idx + frame_num)]
                eye_open_seq = self.eye_open_lst[eye_idx_list]
            more_cond.append(eye_open_seq)

        if self.use_eye_ball:
            if self.eye_ball_seq is not None and len(self.eye_ball_seq) == frame_num:
                eye_ball_seq = self.eye_ball_seq
            else:
                if self.eye_f0_mode:
                    eye_idx_list = [0] * frame_num
                else:
                    eye_idx_list = [_mirror_index(max(i, 0), self.num_eye_ball) for i in range(idx, idx + frame_num)]
                eye_ball_seq = self.eye_ball_lst[eye_idx_list]
            more_cond.append(eye_ball_seq)

        if self.use_sc:
            if len(self.sc_seq) == frame_num:
                sc_seq = self.sc_seq
            else:
                sc_seq = np.stack([self.sc] * frame_num, 0)
            more_cond.append(sc_seq)

        if len(more_cond) > 1:
            cond_seq = np.concatenate(more_cond, -1)    # [n, dim_cond]
        else:
            cond_seq = aud_feat

        return cond_seq