File size: 14,018 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import numpy as np
import cv2
from ..utils.load_model import load_model


def intersect(box_a, box_b):
    """We resize both arrays to [A,B,2] without new malloc:
    [A,2] -> [A,1,2] -> [A,B,2]
    [B,2] -> [1,B,2] -> [A,B,2]
    Then we compute the area of intersect between box_a and box_b.
    Args:
      box_a: (array) bounding boxes, Shape: [A,4].
      box_b: (array) bounding boxes, Shape: [B,4].
    Return:
      (array) intersection area, Shape: [A,B].
    """
    A = box_a.shape[0]
    B = box_b.shape[0]
    max_xy = np.minimum(
        np.expand_dims(box_a[:, 2:], axis=1).repeat(B, axis=1),
        np.expand_dims(box_b[:, 2:], axis=0).repeat(A, axis=0),
    )
    min_xy = np.maximum(
        np.expand_dims(box_a[:, :2], axis=1).repeat(B, axis=1),
        np.expand_dims(box_b[:, :2], axis=0).repeat(A, axis=0),
    )
    inter = np.clip((max_xy - min_xy), a_min=0, a_max=None)
    return inter[:, :, 0] * inter[:, :, 1]


def jaccard(box_a, box_b):
    """Compute the jaccard overlap of two sets of boxes.  The jaccard overlap
    is simply the intersection over union of two boxes.  Here we operate on
    ground truth boxes and default boxes.
    E.g.:
        A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
    Args:
        box_a: (array) Ground truth bounding boxes, Shape: [num_objects,4]
        box_b: (array) Prior boxes from priorbox layers, Shape: [num_priors,4]
    Return:
        jaccard overlap: (array) Shape: [box_a.size(0), box_b.size(0)]
    """
    inter = intersect(box_a, box_b)
    area_a = (
        ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]))
        .reshape(-1, 1)
        .repeat(box_b.shape[0], axis=1)
    )  # [A,B]
    area_b = (
        ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]))
        .reshape(1, -1)
        .repeat(box_a.shape[0], axis=0)
    )  # [A,B]
    union = area_a + area_b - inter
    return inter / union  # [A,B]


def overlap_similarity(box, other_boxes):
    """Computes the IOU between a bounding box and set of other boxes."""
    box = np.expand_dims(box, axis=0)  # Equivalent to unsqueeze(0) in PyTorch
    iou = jaccard(box, other_boxes)
    return np.squeeze(iou, axis=0)  # Equivalent to squeeze(0) in PyTorch


class BlazeFace:
    def __init__(self, model_path, device="cuda"):
        self.anchor_options = {
            "num_layers": 4,
            "min_scale": 0.1484375,
            "max_scale": 0.75,
            "input_size_height": 128,
            "input_size_width": 128,
            "anchor_offset_x": 0.5,
            "anchor_offset_y": 0.5,
            "strides": [8, 16, 16, 16],
            "aspect_ratios": [1.0],
            "reduce_boxes_in_lowest_layer": False,
            "interpolated_scale_aspect_ratio": 1.0,
            "fixed_anchor_size": True,
        }
        self.num_classes = 1
        self.num_anchors = 896
        self.num_coords = 16
        self.x_scale = 128.0
        self.y_scale = 128.0
        self.h_scale = 128.0
        self.w_scale = 128.0
        self.min_score_thresh = 0.5
        self.min_suppression_threshold = 0.3
        self.anchors = self.generate_anchors(self.anchor_options)
        self.anchors = np.array(self.anchors)
        assert len(self.anchors) == 896
        self.model, self.model_type = load_model(model_path, device=device)
        self.output_names = ["regressors", "classificators"]

    def __call__(self, image: np.ndarray):
        """
        image: RGB image
        """
        image = cv2.resize(image, (128, 128))
        image = image[np.newaxis, :, :, :].astype(np.float32)
        image = image / 127.5 - 1.0
        outputs = {}
        if self.model_type == "onnx":
            out_list = self.model.run(None, {"input": image})
            for i, name in enumerate(self.output_names):
                outputs[name] = out_list[i]
        elif self.model_type == "tensorrt":
            self.model.setup({"input": image})
            self.model.infer()
            for name in self.output_names:
                outputs[name] = self.model.buffer[name][0]
        else:
            raise ValueError(f"Unsupported model type: {self.model_type}")
        boxes = self.postprocess(outputs["regressors"], outputs["classificators"])
        return boxes

    def calculate_scale(self, min_scale, max_scale, stride_index, num_strides):
        return min_scale + (max_scale - min_scale) * stride_index / (num_strides - 1.0)

    def generate_anchors(self, options):
        strides_size = len(options["strides"])
        assert options["num_layers"] == strides_size

        anchors = []
        layer_id = 0
        while layer_id < strides_size:
            anchor_height = []
            anchor_width = []
            aspect_ratios = []
            scales = []

            # For same strides, we merge the anchors in the same order.
            last_same_stride_layer = layer_id
            while (last_same_stride_layer < strides_size) and (
                options["strides"][last_same_stride_layer]
                == options["strides"][layer_id]
            ):
                scale = self.calculate_scale(
                    options["min_scale"],
                    options["max_scale"],
                    last_same_stride_layer,
                    strides_size,
                )

                if (
                    last_same_stride_layer == 0
                    and options["reduce_boxes_in_lowest_layer"]
                ):
                    # For first layer, it can be specified to use predefined anchors.
                    aspect_ratios.append(1.0)
                    aspect_ratios.append(2.0)
                    aspect_ratios.append(0.5)
                    scales.append(0.1)
                    scales.append(scale)
                    scales.append(scale)
                else:
                    for aspect_ratio in options["aspect_ratios"]:
                        aspect_ratios.append(aspect_ratio)
                        scales.append(scale)

                    if options["interpolated_scale_aspect_ratio"] > 0.0:
                        scale_next = (
                            1.0
                            if last_same_stride_layer == strides_size - 1
                            else self.calculate_scale(
                                options["min_scale"],
                                options["max_scale"],
                                last_same_stride_layer + 1,
                                strides_size,
                            )
                        )
                        scales.append(np.sqrt(scale * scale_next))
                        aspect_ratios.append(options["interpolated_scale_aspect_ratio"])

                last_same_stride_layer += 1

            for i in range(len(aspect_ratios)):
                ratio_sqrts = np.sqrt(aspect_ratios[i])
                anchor_height.append(scales[i] / ratio_sqrts)
                anchor_width.append(scales[i] * ratio_sqrts)

            stride = options["strides"][layer_id]
            feature_map_height = int(np.ceil(options["input_size_height"] / stride))
            feature_map_width = int(np.ceil(options["input_size_width"] / stride))

            for y in range(feature_map_height):
                for x in range(feature_map_width):
                    for anchor_id in range(len(anchor_height)):
                        x_center = (x + options["anchor_offset_x"]) / feature_map_width
                        y_center = (y + options["anchor_offset_y"]) / feature_map_height

                        new_anchor = [x_center, y_center, 0, 0]
                        if options["fixed_anchor_size"]:
                            new_anchor[2] = 1.0
                            new_anchor[3] = 1.0
                        else:
                            new_anchor[2] = anchor_width[anchor_id]
                            new_anchor[3] = anchor_height[anchor_id]
                        anchors.append(new_anchor)

            layer_id = last_same_stride_layer

        return anchors

    def _tensors_to_detections(self, raw_box_tensor, raw_score_tensor, anchors):
        """The output of the neural network is a tensor of shape (b, 896, 16)
        containing the bounding box regressor predictions, as well as a tensor
        of shape (b, 896, 1) with the classification confidences.

        This function converts these two "raw" tensors into proper detections.
        Returns a list of (num_detections, 17) tensors, one for each image in
        the batch.

        This is based on the source code from:
        mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.cc
        mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.proto
        """
        assert raw_box_tensor.ndim == 3
        assert raw_box_tensor.shape[1] == self.num_anchors
        assert raw_box_tensor.shape[2] == self.num_coords

        assert raw_score_tensor.ndim == 3
        assert raw_score_tensor.shape[1] == self.num_anchors
        assert raw_score_tensor.shape[2] == self.num_classes

        assert raw_box_tensor.shape[0] == raw_score_tensor.shape[0]

        detection_boxes = self._decode_boxes(raw_box_tensor, anchors)

        raw_score_tensor = np.clip(raw_score_tensor, -50, 100)
        detection_scores = 1 / (1 + np.exp(-raw_score_tensor))
        mask = detection_scores >= self.min_score_thresh
        mask = mask[0, :, 0]
        boxes = detection_boxes[0, mask, :]
        scores = detection_scores[0, mask, :]
        return np.concatenate((boxes, scores), axis=-1)

    def _decode_boxes(self, raw_boxes, anchors):
        """Converts the predictions into actual coordinates using
        the anchor boxes. Processes the entire batch at once.
        """
        boxes = np.zeros_like(raw_boxes)

        x_center = raw_boxes[..., 0] / self.x_scale * anchors[:, 2] + anchors[:, 0]
        y_center = raw_boxes[..., 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]

        w = raw_boxes[..., 2] / self.w_scale * anchors[:, 2]
        h = raw_boxes[..., 3] / self.h_scale * anchors[:, 3]

        boxes[..., 0] = self.x_scale * (x_center - w / 2.0)  # xmin
        boxes[..., 1] = self.y_scale * (y_center - h / 2.0)  # ymin
        boxes[..., 2] = self.w_scale * (x_center + w / 2.0)  # xmax
        boxes[..., 3] = self.h_scale * (y_center + h / 2.0)  # ymax

        for k in range(6):
            offset = 4 + k * 2
            keypoint_x = (
                raw_boxes[..., offset] / self.x_scale * anchors[:, 2] + anchors[:, 0]
            )
            keypoint_y = (
                raw_boxes[..., offset + 1] / self.y_scale * anchors[:, 3]
                + anchors[:, 1]
            )
            boxes[..., offset] = keypoint_x
            boxes[..., offset + 1] = keypoint_y

        return boxes

    def _weighted_non_max_suppression(self, detections):
        """The alternative NMS method as mentioned in the BlazeFace paper:

        "We replace the suppression algorithm with a blending strategy that
        estimates the regression parameters of a bounding box as a weighted
        mean between the overlapping predictions."

        The original MediaPipe code assigns the score of the most confident
        detection to the weighted detection, but we take the average score
        of the overlapping detections.

        The input detections should be a NumPy array of shape (count, 17).

        Returns a list of NumPy arrays, one for each detected face.

        This is based on the source code from:
        mediapipe/calculators/util/non_max_suppression_calculator.cc
        mediapipe/calculators/util/non_max_suppression_calculator.proto
        """
        if len(detections) == 0:
            return []

        output_detections = []

        # Sort the detections from highest to lowest score.
        remaining = np.argsort(detections[:, 16])[::-1]

        while len(remaining) > 0:
            detection = detections[remaining[0]]

            # Compute the overlap between the first box and the other
            # remaining boxes. (Note that the other_boxes also include
            # the first_box.)
            first_box = detection[:4]
            other_boxes = detections[remaining, :4]
            ious = overlap_similarity(first_box, other_boxes)

            # If two detections don't overlap enough, they are considered
            # to be from different faces.
            mask = ious > self.min_suppression_threshold
            overlapping = remaining[mask]
            remaining = remaining[~mask]

            # Take an average of the coordinates from the overlapping
            # detections, weighted by their confidence scores.
            weighted_detection = detection.copy()
            if len(overlapping) > 1:
                coordinates = detections[overlapping, :16]
                scores = detections[overlapping, 16:17]
                total_score = scores.sum()
                weighted = (coordinates * scores).sum(axis=0) / total_score
                weighted_detection[:16] = weighted
                weighted_detection[16] = total_score / len(overlapping)

            output_detections.append(weighted_detection)

        return output_detections

    def postprocess(self, raw_boxes, scores):
        detections = self._tensors_to_detections(raw_boxes, scores, self.anchors)

        detections = self._weighted_non_max_suppression(detections)
        detections = np.array(detections)
        return detections


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="")
    parser.add_argument("--image", type=str, default=None)
    args = parser.parse_args()

    blaze_face = BlazeFace(args.model)
    image = cv2.imread(args.image)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, (128, 128))
    image = image[np.newaxis, :, :, :].astype(np.float32)
    image = image / 127.5 - 1.0
    boxes = blaze_face(image)
    print(boxes)