Spaces:
Runtime error
Runtime error
File size: 14,018 Bytes
ac7cda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import numpy as np
import cv2
from ..utils.load_model import load_model
def intersect(box_a, box_b):
"""We resize both arrays to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (array) bounding boxes, Shape: [A,4].
box_b: (array) bounding boxes, Shape: [B,4].
Return:
(array) intersection area, Shape: [A,B].
"""
A = box_a.shape[0]
B = box_b.shape[0]
max_xy = np.minimum(
np.expand_dims(box_a[:, 2:], axis=1).repeat(B, axis=1),
np.expand_dims(box_b[:, 2:], axis=0).repeat(A, axis=0),
)
min_xy = np.maximum(
np.expand_dims(box_a[:, :2], axis=1).repeat(B, axis=1),
np.expand_dims(box_b[:, :2], axis=0).repeat(A, axis=0),
)
inter = np.clip((max_xy - min_xy), a_min=0, a_max=None)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (array) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (array) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (array) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = (
((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]))
.reshape(-1, 1)
.repeat(box_b.shape[0], axis=1)
) # [A,B]
area_b = (
((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]))
.reshape(1, -1)
.repeat(box_a.shape[0], axis=0)
) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
def overlap_similarity(box, other_boxes):
"""Computes the IOU between a bounding box and set of other boxes."""
box = np.expand_dims(box, axis=0) # Equivalent to unsqueeze(0) in PyTorch
iou = jaccard(box, other_boxes)
return np.squeeze(iou, axis=0) # Equivalent to squeeze(0) in PyTorch
class BlazeFace:
def __init__(self, model_path, device="cuda"):
self.anchor_options = {
"num_layers": 4,
"min_scale": 0.1484375,
"max_scale": 0.75,
"input_size_height": 128,
"input_size_width": 128,
"anchor_offset_x": 0.5,
"anchor_offset_y": 0.5,
"strides": [8, 16, 16, 16],
"aspect_ratios": [1.0],
"reduce_boxes_in_lowest_layer": False,
"interpolated_scale_aspect_ratio": 1.0,
"fixed_anchor_size": True,
}
self.num_classes = 1
self.num_anchors = 896
self.num_coords = 16
self.x_scale = 128.0
self.y_scale = 128.0
self.h_scale = 128.0
self.w_scale = 128.0
self.min_score_thresh = 0.5
self.min_suppression_threshold = 0.3
self.anchors = self.generate_anchors(self.anchor_options)
self.anchors = np.array(self.anchors)
assert len(self.anchors) == 896
self.model, self.model_type = load_model(model_path, device=device)
self.output_names = ["regressors", "classificators"]
def __call__(self, image: np.ndarray):
"""
image: RGB image
"""
image = cv2.resize(image, (128, 128))
image = image[np.newaxis, :, :, :].astype(np.float32)
image = image / 127.5 - 1.0
outputs = {}
if self.model_type == "onnx":
out_list = self.model.run(None, {"input": image})
for i, name in enumerate(self.output_names):
outputs[name] = out_list[i]
elif self.model_type == "tensorrt":
self.model.setup({"input": image})
self.model.infer()
for name in self.output_names:
outputs[name] = self.model.buffer[name][0]
else:
raise ValueError(f"Unsupported model type: {self.model_type}")
boxes = self.postprocess(outputs["regressors"], outputs["classificators"])
return boxes
def calculate_scale(self, min_scale, max_scale, stride_index, num_strides):
return min_scale + (max_scale - min_scale) * stride_index / (num_strides - 1.0)
def generate_anchors(self, options):
strides_size = len(options["strides"])
assert options["num_layers"] == strides_size
anchors = []
layer_id = 0
while layer_id < strides_size:
anchor_height = []
anchor_width = []
aspect_ratios = []
scales = []
# For same strides, we merge the anchors in the same order.
last_same_stride_layer = layer_id
while (last_same_stride_layer < strides_size) and (
options["strides"][last_same_stride_layer]
== options["strides"][layer_id]
):
scale = self.calculate_scale(
options["min_scale"],
options["max_scale"],
last_same_stride_layer,
strides_size,
)
if (
last_same_stride_layer == 0
and options["reduce_boxes_in_lowest_layer"]
):
# For first layer, it can be specified to use predefined anchors.
aspect_ratios.append(1.0)
aspect_ratios.append(2.0)
aspect_ratios.append(0.5)
scales.append(0.1)
scales.append(scale)
scales.append(scale)
else:
for aspect_ratio in options["aspect_ratios"]:
aspect_ratios.append(aspect_ratio)
scales.append(scale)
if options["interpolated_scale_aspect_ratio"] > 0.0:
scale_next = (
1.0
if last_same_stride_layer == strides_size - 1
else self.calculate_scale(
options["min_scale"],
options["max_scale"],
last_same_stride_layer + 1,
strides_size,
)
)
scales.append(np.sqrt(scale * scale_next))
aspect_ratios.append(options["interpolated_scale_aspect_ratio"])
last_same_stride_layer += 1
for i in range(len(aspect_ratios)):
ratio_sqrts = np.sqrt(aspect_ratios[i])
anchor_height.append(scales[i] / ratio_sqrts)
anchor_width.append(scales[i] * ratio_sqrts)
stride = options["strides"][layer_id]
feature_map_height = int(np.ceil(options["input_size_height"] / stride))
feature_map_width = int(np.ceil(options["input_size_width"] / stride))
for y in range(feature_map_height):
for x in range(feature_map_width):
for anchor_id in range(len(anchor_height)):
x_center = (x + options["anchor_offset_x"]) / feature_map_width
y_center = (y + options["anchor_offset_y"]) / feature_map_height
new_anchor = [x_center, y_center, 0, 0]
if options["fixed_anchor_size"]:
new_anchor[2] = 1.0
new_anchor[3] = 1.0
else:
new_anchor[2] = anchor_width[anchor_id]
new_anchor[3] = anchor_height[anchor_id]
anchors.append(new_anchor)
layer_id = last_same_stride_layer
return anchors
def _tensors_to_detections(self, raw_box_tensor, raw_score_tensor, anchors):
"""The output of the neural network is a tensor of shape (b, 896, 16)
containing the bounding box regressor predictions, as well as a tensor
of shape (b, 896, 1) with the classification confidences.
This function converts these two "raw" tensors into proper detections.
Returns a list of (num_detections, 17) tensors, one for each image in
the batch.
This is based on the source code from:
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.cc
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.proto
"""
assert raw_box_tensor.ndim == 3
assert raw_box_tensor.shape[1] == self.num_anchors
assert raw_box_tensor.shape[2] == self.num_coords
assert raw_score_tensor.ndim == 3
assert raw_score_tensor.shape[1] == self.num_anchors
assert raw_score_tensor.shape[2] == self.num_classes
assert raw_box_tensor.shape[0] == raw_score_tensor.shape[0]
detection_boxes = self._decode_boxes(raw_box_tensor, anchors)
raw_score_tensor = np.clip(raw_score_tensor, -50, 100)
detection_scores = 1 / (1 + np.exp(-raw_score_tensor))
mask = detection_scores >= self.min_score_thresh
mask = mask[0, :, 0]
boxes = detection_boxes[0, mask, :]
scores = detection_scores[0, mask, :]
return np.concatenate((boxes, scores), axis=-1)
def _decode_boxes(self, raw_boxes, anchors):
"""Converts the predictions into actual coordinates using
the anchor boxes. Processes the entire batch at once.
"""
boxes = np.zeros_like(raw_boxes)
x_center = raw_boxes[..., 0] / self.x_scale * anchors[:, 2] + anchors[:, 0]
y_center = raw_boxes[..., 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]
w = raw_boxes[..., 2] / self.w_scale * anchors[:, 2]
h = raw_boxes[..., 3] / self.h_scale * anchors[:, 3]
boxes[..., 0] = self.x_scale * (x_center - w / 2.0) # xmin
boxes[..., 1] = self.y_scale * (y_center - h / 2.0) # ymin
boxes[..., 2] = self.w_scale * (x_center + w / 2.0) # xmax
boxes[..., 3] = self.h_scale * (y_center + h / 2.0) # ymax
for k in range(6):
offset = 4 + k * 2
keypoint_x = (
raw_boxes[..., offset] / self.x_scale * anchors[:, 2] + anchors[:, 0]
)
keypoint_y = (
raw_boxes[..., offset + 1] / self.y_scale * anchors[:, 3]
+ anchors[:, 1]
)
boxes[..., offset] = keypoint_x
boxes[..., offset + 1] = keypoint_y
return boxes
def _weighted_non_max_suppression(self, detections):
"""The alternative NMS method as mentioned in the BlazeFace paper:
"We replace the suppression algorithm with a blending strategy that
estimates the regression parameters of a bounding box as a weighted
mean between the overlapping predictions."
The original MediaPipe code assigns the score of the most confident
detection to the weighted detection, but we take the average score
of the overlapping detections.
The input detections should be a NumPy array of shape (count, 17).
Returns a list of NumPy arrays, one for each detected face.
This is based on the source code from:
mediapipe/calculators/util/non_max_suppression_calculator.cc
mediapipe/calculators/util/non_max_suppression_calculator.proto
"""
if len(detections) == 0:
return []
output_detections = []
# Sort the detections from highest to lowest score.
remaining = np.argsort(detections[:, 16])[::-1]
while len(remaining) > 0:
detection = detections[remaining[0]]
# Compute the overlap between the first box and the other
# remaining boxes. (Note that the other_boxes also include
# the first_box.)
first_box = detection[:4]
other_boxes = detections[remaining, :4]
ious = overlap_similarity(first_box, other_boxes)
# If two detections don't overlap enough, they are considered
# to be from different faces.
mask = ious > self.min_suppression_threshold
overlapping = remaining[mask]
remaining = remaining[~mask]
# Take an average of the coordinates from the overlapping
# detections, weighted by their confidence scores.
weighted_detection = detection.copy()
if len(overlapping) > 1:
coordinates = detections[overlapping, :16]
scores = detections[overlapping, 16:17]
total_score = scores.sum()
weighted = (coordinates * scores).sum(axis=0) / total_score
weighted_detection[:16] = weighted
weighted_detection[16] = total_score / len(overlapping)
output_detections.append(weighted_detection)
return output_detections
def postprocess(self, raw_boxes, scores):
detections = self._tensors_to_detections(raw_boxes, scores, self.anchors)
detections = self._weighted_non_max_suppression(detections)
detections = np.array(detections)
return detections
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="")
parser.add_argument("--image", type=str, default=None)
args = parser.parse_args()
blaze_face = BlazeFace(args.model)
image = cv2.imread(args.image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (128, 128))
image = image[np.newaxis, :, :, :].astype(np.float32)
image = image / 127.5 - 1.0
boxes = blaze_face(image)
print(boxes)
|