File size: 2,793 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# insightface
from __future__ import division
import onnxruntime
import cv2
import numpy as np
from skimage import transform as trans


def transform(data, center, output_size, scale, rotation):
    scale_ratio = scale
    rot = float(rotation) * np.pi / 180.0
    
    t1 = trans.SimilarityTransform(scale=scale_ratio)
    cx = center[0] * scale_ratio
    cy = center[1] * scale_ratio
    t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
    t3 = trans.SimilarityTransform(rotation=rot)
    t4 = trans.SimilarityTransform(translation=(output_size / 2,
                                                output_size / 2))
    t = t1 + t2 + t3 + t4
    M = t.params[0:2]
    cropped = cv2.warpAffine(data,
                             M, (output_size, output_size),
                             borderValue=0.0)
    return cropped, M
   

def trans_points2d(pts, M):
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        new_pts[i] = new_pt[0:2]

    return new_pts



class Landmark106:
    def __init__(self, model_file, device="cuda"):
        if device == "cuda":
            providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
        else:
            providers = ["CPUExecutionProvider"]
        self.session = onnxruntime.InferenceSession(model_file, providers=providers)

        self.input_mean = 0.0
        self.input_std = 1.0
        self.input_size = (192, 192)
        input_cfg = self.session.get_inputs()[0]
        input_name = input_cfg.name
        outputs = self.session.get_outputs()
        output_names = []
        for out in outputs:
            output_names.append(out.name)
        self.input_name = input_name
        self.output_names = output_names
        self.lmk_num = 106

    def get(self, img, bbox):
        w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
        center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
        rotate = 0
        _scale = self.input_size[0]  / (max(w, h)*1.5)
        
        aimg, M = transform(img, center, self.input_size[0], _scale, rotate)
        input_size = tuple(aimg.shape[0:2][::-1])
        
        blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)

        pred = self.session.run(self.output_names, {self.input_name : blob})[0][0]

        pred = pred.reshape((-1, 2))
        if self.lmk_num < pred.shape[0]:
            pred = pred[self.lmk_num*-1:,:]
        pred[:, 0:2] += 1
        pred[:, 0:2] *= (self.input_size[0] // 2)

        IM = cv2.invertAffineTransform(M)
        pred = trans_points2d(pred, IM)
        return pred