Spaces:
Runtime error
Runtime error
File size: 9,064 Bytes
b27232b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
"""
Avatar Cache System for DittoTalkingHead
Implements image pre-upload and embedding caching
"""
import os
import pickle
import hashlib
import time
from typing import Optional, Dict, Any, Tuple
from datetime import datetime, timedelta
import json
from pathlib import Path
class AvatarCache:
"""
Avatar embedding cache system
Stores pre-computed image embeddings for faster video generation
"""
def __init__(self, cache_dir: str = "/tmp/avatar_cache", ttl_days: int = 14):
"""
Initialize avatar cache
Args:
cache_dir: Directory to store cache files
ttl_days: Time to live for cache entries in days
"""
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.ttl_seconds = ttl_days * 24 * 60 * 60
self.metadata_file = self.cache_dir / "metadata.json"
# Load existing metadata
self.metadata = self._load_metadata()
# Clean expired entries on initialization
self._cleanup_expired()
def _load_metadata(self) -> Dict[str, Any]:
"""Load cache metadata"""
if self.metadata_file.exists():
try:
with open(self.metadata_file, 'r') as f:
return json.load(f)
except:
return {}
return {}
def _save_metadata(self):
"""Save cache metadata"""
with open(self.metadata_file, 'w') as f:
json.dump(self.metadata, f, indent=2)
def _cleanup_expired(self):
"""Remove expired cache entries"""
current_time = time.time()
expired_tokens = []
for token, info in self.metadata.items():
if current_time > info['expires_at']:
expired_tokens.append(token)
cache_file = self.cache_dir / f"{token}.pkl"
if cache_file.exists():
cache_file.unlink()
for token in expired_tokens:
del self.metadata[token]
if expired_tokens:
self._save_metadata()
print(f"Cleaned up {len(expired_tokens)} expired cache entries")
def generate_token(self, img_bytes: bytes) -> str:
"""
Generate unique token for image
Args:
img_bytes: Image data as bytes
Returns:
SHA-1 hash token
"""
return hashlib.sha1(img_bytes).hexdigest()
def store_embedding(
self,
img_bytes: bytes,
embedding: Any,
additional_info: Optional[Dict[str, Any]] = None
) -> Tuple[str, datetime]:
"""
Store image embedding in cache
Args:
img_bytes: Image data as bytes
embedding: Pre-computed embedding (latent vector)
additional_info: Additional metadata to store
Returns:
Tuple of (token, expiration_date)
"""
token = self.generate_token(img_bytes)
cache_file = self.cache_dir / f"{token}.pkl"
# Calculate expiration
expires_at = time.time() + self.ttl_seconds
expiration_date = datetime.fromtimestamp(expires_at)
# Save embedding
cache_data = {
'embedding': embedding,
'created_at': time.time(),
'expires_at': expires_at,
'additional_info': additional_info or {}
}
with open(cache_file, 'wb') as f:
pickle.dump(cache_data, f)
# Update metadata
self.metadata[token] = {
'expires_at': expires_at,
'created_at': time.time(),
'file_size': os.path.getsize(cache_file)
}
self._save_metadata()
return token, expiration_date
def load_embedding(self, token: str) -> Optional[Any]:
"""
Load embedding from cache
Args:
token: Avatar token
Returns:
Embedding if found and valid, None otherwise
"""
# Check if token exists and not expired
if token not in self.metadata:
return None
if time.time() > self.metadata[token]['expires_at']:
# Token expired
self._cleanup_expired()
return None
# Load from file
cache_file = self.cache_dir / f"{token}.pkl"
if not cache_file.exists():
# File missing, clean up metadata
del self.metadata[token]
self._save_metadata()
return None
try:
with open(cache_file, 'rb') as f:
cache_data = pickle.load(f)
return cache_data['embedding']
except Exception as e:
print(f"Error loading cache for token {token}: {e}")
return None
def get_cache_info(self) -> Dict[str, Any]:
"""
Get cache statistics
Returns:
Cache information
"""
total_size = 0
active_entries = 0
for token, info in self.metadata.items():
if time.time() <= info['expires_at']:
active_entries += 1
total_size += info.get('file_size', 0)
return {
'cache_dir': str(self.cache_dir),
'active_entries': active_entries,
'total_entries': len(self.metadata),
'total_size_mb': total_size / (1024 * 1024),
'ttl_days': self.ttl_seconds / (24 * 60 * 60)
}
def clear_cache(self):
"""Clear all cache entries"""
for file in self.cache_dir.glob("*.pkl"):
file.unlink()
self.metadata = {}
self._save_metadata()
print("Avatar cache cleared")
class AvatarTokenManager:
"""
Manages avatar tokens and their lifecycle
"""
def __init__(self, cache: AvatarCache):
"""
Initialize token manager
Args:
cache: Avatar cache instance
"""
self.cache = cache
def prepare_avatar(
self,
image_data: bytes,
appearance_encoder_func: callable,
**encoder_kwargs
) -> Dict[str, Any]:
"""
Prepare avatar by pre-computing embedding
Args:
image_data: Image data as bytes
appearance_encoder_func: Function to encode appearance
**encoder_kwargs: Additional arguments for encoder
Returns:
Response with avatar token and expiration
"""
# Check if already cached
token = self.cache.generate_token(image_data)
existing_embedding = self.cache.load_embedding(token)
if existing_embedding is not None:
# Already cached, return existing token
metadata = self.cache.metadata.get(token, {})
expires_at = datetime.fromtimestamp(metadata.get('expires_at', 0))
return {
'avatar_token': token,
'expires': expires_at.isoformat(),
'cached': True
}
# Compute new embedding
try:
embedding = appearance_encoder_func(image_data, **encoder_kwargs)
# Store in cache
token, expiration = self.cache.store_embedding(
image_data,
embedding,
additional_info={'encoder_kwargs': encoder_kwargs}
)
return {
'avatar_token': token,
'expires': expiration.isoformat(),
'cached': False
}
except Exception as e:
raise RuntimeError(f"Failed to prepare avatar: {str(e)}")
def validate_token(self, token: str) -> bool:
"""
Validate if token is valid and not expired
Args:
token: Avatar token to validate
Returns:
True if valid, False otherwise
"""
return self.cache.load_embedding(token) is not None
def get_token_info(self, token: str) -> Optional[Dict[str, Any]]:
"""
Get information about a token
Args:
token: Avatar token
Returns:
Token information if found, None otherwise
"""
if token not in self.cache.metadata:
return None
info = self.cache.metadata[token]
current_time = time.time()
return {
'token': token,
'valid': current_time <= info['expires_at'],
'created_at': datetime.fromtimestamp(info['created_at']).isoformat(),
'expires_at': datetime.fromtimestamp(info['expires_at']).isoformat(),
'file_size_kb': info.get('file_size', 0) / 1024
} |