Spaces:
Runtime error
Runtime error
File size: 12,070 Bytes
07b71bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
"""
Inference Cache System for DittoTalkingHead
Caches video generation results for faster repeated processing
"""
import hashlib
import json
import os
import pickle
import time
from pathlib import Path
from typing import Optional, Dict, Any, Tuple, Union
from functools import lru_cache
import shutil
from datetime import datetime, timedelta
class InferenceCache:
"""
Cache system for video generation results
Supports both memory and file-based caching
"""
def __init__(
self,
cache_dir: str = "/tmp/inference_cache",
memory_cache_size: int = 100,
file_cache_size_gb: float = 10.0,
ttl_hours: int = 24
):
"""
Initialize inference cache
Args:
cache_dir: Directory for file-based cache
memory_cache_size: Maximum number of items in memory cache
file_cache_size_gb: Maximum size of file cache in GB
ttl_hours: Time to live for cache entries in hours
"""
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.memory_cache_size = memory_cache_size
self.file_cache_size_bytes = int(file_cache_size_gb * 1024 * 1024 * 1024)
self.ttl_seconds = ttl_hours * 3600
# Metadata file for managing cache
self.metadata_file = self.cache_dir / "cache_metadata.json"
self.metadata = self._load_metadata()
# In-memory cache
self._memory_cache = {}
self._access_times = {}
# Clean up expired entries on initialization
self._cleanup_expired()
def _load_metadata(self) -> Dict[str, Any]:
"""Load cache metadata"""
if self.metadata_file.exists():
try:
with open(self.metadata_file, 'r') as f:
return json.load(f)
except:
return {}
return {}
def _save_metadata(self):
"""Save cache metadata"""
with open(self.metadata_file, 'w') as f:
json.dump(self.metadata, f, indent=2)
def generate_cache_key(
self,
audio_path: str,
image_path: str,
**kwargs
) -> str:
"""
Generate unique cache key based on input parameters
Args:
audio_path: Path to audio file
image_path: Path to image file
**kwargs: Additional parameters affecting output
Returns:
SHA-256 hash as cache key
"""
# Read file contents for hashing
with open(audio_path, 'rb') as f:
audio_hash = hashlib.sha256(f.read()).hexdigest()
with open(image_path, 'rb') as f:
image_hash = hashlib.sha256(f.read()).hexdigest()
# Include relevant parameters in key
key_data = {
'audio': audio_hash,
'image': image_hash,
'resolution': kwargs.get('resolution', '320x320'),
'steps': kwargs.get('steps', 25),
'seed': kwargs.get('seed', None)
}
# Generate final key
key_str = json.dumps(key_data, sort_keys=True)
return hashlib.sha256(key_str.encode()).hexdigest()
def get_from_memory(self, cache_key: str) -> Optional[str]:
"""
Get video path from memory cache
Args:
cache_key: Cache key
Returns:
Video file path if found, None otherwise
"""
if cache_key in self._memory_cache:
self._access_times[cache_key] = time.time()
return self._memory_cache[cache_key]
return None
def get_from_file(self, cache_key: str) -> Optional[str]:
"""
Get video path from file cache
Args:
cache_key: Cache key
Returns:
Video file path if found, None otherwise
"""
if cache_key not in self.metadata:
return None
entry = self.metadata[cache_key]
# Check expiration
if time.time() > entry['expires_at']:
self._remove_cache_entry(cache_key)
return None
# Check if file exists
video_path = self.cache_dir / entry['filename']
if not video_path.exists():
self._remove_cache_entry(cache_key)
return None
# Update access time
self.metadata[cache_key]['last_access'] = time.time()
self._save_metadata()
# Add to memory cache
self._add_to_memory_cache(cache_key, str(video_path))
return str(video_path)
def get(self, cache_key: str) -> Optional[str]:
"""
Get video from cache (memory first, then file)
Args:
cache_key: Cache key
Returns:
Video file path if found, None otherwise
"""
# Try memory cache first
result = self.get_from_memory(cache_key)
if result:
return result
# Try file cache
return self.get_from_file(cache_key)
def put(
self,
cache_key: str,
video_path: str,
**metadata
) -> bool:
"""
Store video in cache
Args:
cache_key: Cache key
video_path: Path to generated video
**metadata: Additional metadata to store
Returns:
True if stored successfully
"""
try:
# Copy video to cache directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
cache_filename = f"{cache_key[:8]}_{timestamp}.mp4"
cache_video_path = self.cache_dir / cache_filename
shutil.copy2(video_path, cache_video_path)
# Store metadata
self.metadata[cache_key] = {
'filename': cache_filename,
'created_at': time.time(),
'expires_at': time.time() + self.ttl_seconds,
'last_access': time.time(),
'size_bytes': os.path.getsize(cache_video_path),
'metadata': metadata
}
# Check cache size and clean if needed
self._check_cache_size()
# Save metadata
self._save_metadata()
# Add to memory cache
self._add_to_memory_cache(cache_key, str(cache_video_path))
return True
except Exception as e:
print(f"Error storing cache: {e}")
return False
def _add_to_memory_cache(self, cache_key: str, video_path: str):
"""Add item to memory cache with LRU eviction"""
# Check if we need to evict
if len(self._memory_cache) >= self.memory_cache_size:
# Find least recently used
lru_key = min(self._access_times, key=self._access_times.get)
del self._memory_cache[lru_key]
del self._access_times[lru_key]
self._memory_cache[cache_key] = video_path
self._access_times[cache_key] = time.time()
def _check_cache_size(self):
"""Check and maintain cache size limit"""
total_size = sum(
entry['size_bytes']
for entry in self.metadata.values()
)
if total_size > self.file_cache_size_bytes:
# Remove oldest entries until under limit
sorted_entries = sorted(
self.metadata.items(),
key=lambda x: x[1]['last_access']
)
while total_size > self.file_cache_size_bytes and sorted_entries:
key_to_remove, entry = sorted_entries.pop(0)
total_size -= entry['size_bytes']
self._remove_cache_entry(key_to_remove)
def _cleanup_expired(self):
"""Remove expired cache entries"""
current_time = time.time()
expired_keys = [
key for key, entry in self.metadata.items()
if current_time > entry['expires_at']
]
for key in expired_keys:
self._remove_cache_entry(key)
if expired_keys:
print(f"Cleaned up {len(expired_keys)} expired cache entries")
def _remove_cache_entry(self, cache_key: str):
"""Remove a cache entry"""
if cache_key in self.metadata:
# Remove file
video_file = self.cache_dir / self.metadata[cache_key]['filename']
if video_file.exists():
video_file.unlink()
# Remove from metadata
del self.metadata[cache_key]
# Remove from memory cache
if cache_key in self._memory_cache:
del self._memory_cache[cache_key]
del self._access_times[cache_key]
def clear_cache(self):
"""Clear all cache entries"""
# Remove all video files
for file in self.cache_dir.glob("*.mp4"):
file.unlink()
# Clear metadata
self.metadata = {}
self._save_metadata()
# Clear memory cache
self._memory_cache.clear()
self._access_times.clear()
print("Inference cache cleared")
def get_cache_stats(self) -> Dict[str, Any]:
"""Get cache statistics"""
total_size = sum(
entry['size_bytes']
for entry in self.metadata.values()
)
memory_hits = len(self._memory_cache)
file_entries = len(self.metadata)
return {
'memory_cache_entries': memory_hits,
'file_cache_entries': file_entries,
'total_cache_size_mb': total_size / (1024 * 1024),
'cache_size_limit_gb': self.file_cache_size_bytes / (1024 * 1024 * 1024),
'ttl_hours': self.ttl_seconds / 3600,
'cache_directory': str(self.cache_dir)
}
class CachedInference:
"""
Wrapper for cached inference execution
"""
def __init__(self, cache: InferenceCache):
"""
Initialize cached inference
Args:
cache: InferenceCache instance
"""
self.cache = cache
def process_with_cache(
self,
inference_func: callable,
audio_path: str,
image_path: str,
output_path: str,
**kwargs
) -> Tuple[str, bool, float]:
"""
Process with caching
Args:
inference_func: Function to generate video
audio_path: Path to audio file
image_path: Path to image file
output_path: Desired output path
**kwargs: Additional parameters
Returns:
Tuple of (output_path, cache_hit, process_time)
"""
start_time = time.time()
# Generate cache key
cache_key = self.cache.generate_cache_key(
audio_path, image_path, **kwargs
)
# Check cache
cached_video = self.cache.get(cache_key)
if cached_video:
# Cache hit - copy to output path
shutil.copy2(cached_video, output_path)
process_time = time.time() - start_time
print(f"✅ Cache hit! Retrieved in {process_time:.2f}s")
return output_path, True, process_time
# Cache miss - generate video
print("Cache miss - generating video...")
inference_func(audio_path, image_path, output_path, **kwargs)
# Store in cache
if os.path.exists(output_path):
self.cache.put(cache_key, output_path, **kwargs)
process_time = time.time() - start_time
return output_path, False, process_time |