File size: 8,399 Bytes
07b71bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
Parallel Inference Integration for DittoTalkingHead
Integrates parallel processing into the inference pipeline
"""

import asyncio
import time
from typing import Dict, Any, Tuple, Optional
import numpy as np
import torch
from pathlib import Path

from .parallel_processing import ParallelProcessor, PipelineProcessor


class ParallelInference:
    """
    Parallel inference wrapper for DittoTalkingHead
    """
    
    def __init__(self, sdk, parallel_processor: Optional[ParallelProcessor] = None):
        """
        Initialize parallel inference
        
        Args:
            sdk: StreamSDK instance
            parallel_processor: ParallelProcessor instance
        """
        self.sdk = sdk
        self.parallel_processor = parallel_processor or ParallelProcessor(num_threads=4)
        
        # Setup pipeline stages
        self.pipeline_stages = {
            'load': self._load_files,
            'preprocess': self._preprocess,
            'inference': self._inference,
            'postprocess': self._postprocess
        }
    
    def _load_files(self, paths: Dict[str, str]) -> Dict[str, Any]:
        """Load audio and image files"""
        audio_path = paths['audio']
        image_path = paths['image']
        
        # Parallel loading
        audio_data, image_data = self.parallel_processor.preprocess_parallel_sync(
            audio_path, image_path
        )
        
        return {
            'audio_data': audio_data,
            'image_data': image_data,
            'paths': paths
        }
    
    def _preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Preprocess loaded data"""
        # Extract audio features
        audio = data['audio_data']['audio']
        sr = data['audio_data']['sample_rate']
        
        # Prepare for SDK
        import librosa
        import math
        
        # Calculate number of frames
        num_frames = math.ceil(len(audio) / 16000 * 25)
        
        # Prepare image
        image = data['image_data']['image']
        
        return {
            'audio': audio,
            'image': image,
            'num_frames': num_frames,
            'paths': data['paths']
        }
    
    def _inference(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Run inference"""
        # This would integrate with the actual SDK inference
        # For now, placeholder
        return {
            'result': 'inference_result',
            'paths': data['paths']
        }
    
    def _postprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Postprocess results"""
        return data
    
    async def process_parallel_async(
        self,
        audio_path: str,
        image_path: str,
        output_path: str,
        **kwargs
    ) -> Tuple[str, float]:
        """
        Process with full parallelization (async)
        
        Args:
            audio_path: Path to audio file
            image_path: Path to image file
            output_path: Output video path
            **kwargs: Additional parameters
            
        Returns:
            Tuple of (output_path, process_time)
        """
        start_time = time.time()
        
        # Parallel preprocessing
        audio_data, image_data = await self.parallel_processor.preprocess_parallel_async(
            audio_path, image_path, kwargs.get('target_size', 320)
        )
        
        # Run inference (simplified for integration)
        # In real implementation, this would call SDK methods
        
        process_time = time.time() - start_time
        return output_path, process_time
    
    def process_parallel_sync(
        self,
        audio_path: str,
        image_path: str,
        output_path: str,
        **kwargs
    ) -> Tuple[str, float]:
        """
        Process with parallelization (sync)
        
        Args:
            audio_path: Path to audio file
            image_path: Path to image file
            output_path: Output video path
            **kwargs: Additional parameters
            
        Returns:
            Tuple of (output_path, process_time)
        """
        start_time = time.time()
        
        try:
            # Parallel preprocessing
            print("🔄 Starting parallel preprocessing...")
            preprocess_start = time.time()
            
            audio_data, image_data = self.parallel_processor.preprocess_parallel_sync(
                audio_path, image_path, kwargs.get('target_size', 320)
            )
            
            preprocess_time = time.time() - preprocess_start
            print(f"✅ Parallel preprocessing completed in {preprocess_time:.2f}s")
            
            # Run actual SDK inference
            # This integrates with the existing SDK
            from inference import run, seed_everything
            
            seed_everything(kwargs.get('seed', 1024))
            
            inference_start = time.time()
            run(self.sdk, audio_path, image_path, output_path, more_kwargs=kwargs.get('more_kwargs', {}))
            inference_time = time.time() - inference_start
            
            print(f"✅ Inference completed in {inference_time:.2f}s")
            
            total_time = time.time() - start_time
            
            # Performance breakdown
            print(f"""
🎯 Performance Breakdown:
- Preprocessing (parallel): {preprocess_time:.2f}s
- Inference: {inference_time:.2f}s
- Total: {total_time:.2f}s
""")
            
            return output_path, total_time
            
        except Exception as e:
            print(f"❌ Error in parallel processing: {e}")
            raise
    
    def get_performance_stats(self) -> Dict[str, Any]:
        """Get performance statistics"""
        return {
            'num_threads': self.parallel_processor.num_threads,
            'num_processes': self.parallel_processor.num_processes,
            'cuda_streams_enabled': self.parallel_processor.use_cuda_streams
        }


class OptimizedInferenceWrapper:
    """
    Wrapper that combines all optimizations
    """
    
    def __init__(
        self,
        sdk,
        use_parallel: bool = True,
        use_cache: bool = True,
        use_gpu_opt: bool = True
    ):
        """
        Initialize optimized inference wrapper
        
        Args:
            sdk: StreamSDK instance
            use_parallel: Enable parallel processing
            use_cache: Enable caching
            use_gpu_opt: Enable GPU optimizations
        """
        self.sdk = sdk
        self.use_parallel = use_parallel
        self.use_cache = use_cache
        self.use_gpu_opt = use_gpu_opt
        
        # Initialize components
        if use_parallel:
            self.parallel_processor = ParallelProcessor(num_threads=4)
            self.parallel_inference = ParallelInference(sdk, self.parallel_processor)
        else:
            self.parallel_processor = None
            self.parallel_inference = None
    
    def process(
        self,
        audio_path: str,
        image_path: str,
        output_path: str,
        **kwargs
    ) -> Tuple[str, float, Dict[str, Any]]:
        """
        Process with all optimizations
        
        Returns:
            Tuple of (output_path, process_time, stats)
        """
        stats = {
            'parallel_enabled': self.use_parallel,
            'cache_enabled': self.use_cache,
            'gpu_opt_enabled': self.use_gpu_opt
        }
        
        if self.use_parallel and self.parallel_inference:
            output_path, process_time = self.parallel_inference.process_parallel_sync(
                audio_path, image_path, output_path, **kwargs
            )
            stats['preprocessing'] = 'parallel'
        else:
            # Fallback to sequential
            from inference import run, seed_everything
            start_time = time.time()
            seed_everything(kwargs.get('seed', 1024))
            run(self.sdk, audio_path, image_path, output_path, more_kwargs=kwargs.get('more_kwargs', {}))
            process_time = time.time() - start_time
            stats['preprocessing'] = 'sequential'
        
        stats['process_time'] = process_time
        
        return output_path, process_time, stats
    
    def shutdown(self):
        """Cleanup resources"""
        if self.parallel_processor:
            self.parallel_processor.shutdown()