File size: 10,480 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import ctypes
from collections import OrderedDict
from typing import Type
from cuda import cuda, cudart, nvrtc
import numpy as np
import torch
import ctypes
import os
import torch

try:
    import tensorrt as trt
except ImportError:
    import tensorrt_libs

    trt_libs_path = tensorrt_libs.__path__[0]
    ctypes.CDLL(os.path.join(trt_libs_path, "libnvinfer.so.8"))
    ctypes.CDLL(os.path.join(trt_libs_path, "libnvinfer_plugin.so.8"))
    ctypes.CDLL(os.path.join(trt_libs_path, "libnvonnxparser.so.8"))
    ctypes.CDLL(os.path.join(trt_libs_path, "libnvparsers.so.8"))
    ctypes.CDLL(os.path.join(trt_libs_path, "libnvinfer_builder_resource.so.8.6.1"))
    import tensorrt as trt

logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(logger, "")


def _cudaGetErrorEnum(error):
    if isinstance(error, cuda.CUresult):
        err, name = cuda.cuGetErrorName(error)
        return name if err == cuda.CUresult.CUDA_SUCCESS else "<unknown>"
    elif isinstance(error, cudart.cudaError_t):
        return cudart.cudaGetErrorName(error)[1]
    elif isinstance(error, nvrtc.nvrtcResult):
        return nvrtc.nvrtcGetErrorString(error)[1]
    else:
        raise RuntimeError("Unknown error type: {}".format(error))


def checkCudaErrors(result):
    if result[0].value:
        raise RuntimeError(
            "CUDA error code={}({})".format(
                result[0].value, _cudaGetErrorEnum(result[0])
            )
        )
    if len(result) == 1:
        return None
    elif len(result) == 2:
        return result[1]
    else:
        return result[1:]


class MyOutputAllocator(trt.IOutputAllocator):
    def __init__(self) -> None:
        super().__init__()
        # members for outside use
        self.shape = None
        self.n_bytes = 0
        self.address = 0

    def reallocate_output(self, tensor_name, old_address, size, alignment) -> int:
        return self.reallocate_common(tensor_name, old_address, size, alignment)

    def reallocate_output_async(
        self, tensor_name, old_address, size, alignment, stream
    ) -> int:
        return self.reallocate_common(tensor_name, old_address, size, alignment, stream)

    def notify_shape(self, tensor_name, shape):
        self.shape = shape
        return

    def reallocate_common(
        self, tensor_name, old_address, size, alignment, stream=-1
    ):  # not necessary API
        if size <= self.n_bytes:
            return old_address
        if old_address != 0:
            checkCudaErrors(cudart.cudaFree(old_address))
        if stream == -1:
            address = checkCudaErrors(cudart.cudaMalloc(size))
        else:
            address = checkCudaErrors(cudart.cudaMallocAsync(size, stream))
        self.n_bytes = size
        self.address = address
        return address


class TRTWrapper:
    def __init__(
        self,
        trt_file: str,
        plugin_file_list: list = [],
    ) -> None:
        # Load custom plugins
        for plugin_file in plugin_file_list:
            ctypes.cdll.LoadLibrary(plugin_file)

        # Load engine bytes from file
        self.model = trt_file
        with open(trt_file, "rb") as f, trt.Runtime(logger) as runtime:
            assert runtime
            self.engine = runtime.deserialize_cuda_engine(f.read())
        assert self.engine
        self.buffer = OrderedDict()
        self.output_allocator_map = OrderedDict()
        self.context = self.engine.create_execution_context()
        return

    def setup(self, input_data: dict = {}) -> None:
        for name, value in self.buffer.items():
            _, device_buffer, _ = value
            if (
                device_buffer is not None
                and device_buffer != 0
                and name not in self.output_allocator_map
            ):
                checkCudaErrors(cudart.cudaFree(device_buffer))
                self.buffer[name][1] = None
                self.buffer[name][2] = 0
        self.tensor_name_list = [
            self.engine.get_tensor_name(i) for i in range(self.engine.num_io_tensors)
        ]
        self.n_input = sum(
            [
                self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT
                for name in self.tensor_name_list
            ]
        )
        self.n_output = self.engine.num_io_tensors - self.n_input

        for name, data in input_data.items():
            if self.engine.get_tensor_location(name) == trt.TensorLocation.DEVICE:
                self.context.set_input_shape(name, data.shape)
            else:
                self.context.set_tensor_address(name, data.ctypes.data)

        # Prepare work before inference
        for name in self.tensor_name_list:
            data_type = self.engine.get_tensor_dtype(name)
            runtime_shape = self.context.get_tensor_shape(name)
            if name not in self.output_allocator_map:
                if -1 in runtime_shape:
                    # for Data-Dependent-Shape (DDS) output, "else" branch for normal output
                    n_byte = 0  # self.context.get_max_output_size(name)
                    self.output_allocator_map[name] = MyOutputAllocator()
                    self.context.set_output_allocator(
                        name, self.output_allocator_map[name]
                    )
                    host_buffer = np.empty(0, dtype=trt.nptype(data_type))
                    device_buffer = None
                else:
                    n_byte = trt.volume(runtime_shape) * data_type.itemsize
                    host_buffer = np.empty(runtime_shape, dtype=trt.nptype(data_type))
                    if (
                        self.engine.get_tensor_location(name)
                        == trt.TensorLocation.DEVICE
                    ):
                        device_buffer = checkCudaErrors(cudart.cudaMalloc(n_byte))
                    else:
                        device_buffer = None
                self.buffer[name] = [host_buffer, device_buffer, n_byte]
            else:
                # for DDS output, don't need to reallocate
                pass

        for name, data in input_data.items():
            self.buffer[name][0] = np.ascontiguousarray(data)

        for name in self.tensor_name_list:
            if self.engine.get_tensor_location(name) == trt.TensorLocation.DEVICE:
                if self.buffer[name][1] is not None:
                    self.context.set_tensor_address(name, self.buffer[name][1])
            elif self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT:
                self.context.set_tensor_address(name, self.buffer[name][0].ctypes.data)

        return

    def infer(self, stream=0) -> None:
        # Do inference and print output
        for name in self.tensor_name_list:
            if (
                self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT
                and self.engine.get_tensor_location(name) == trt.TensorLocation.DEVICE
            ):
                cudart.cudaMemcpy(
                    self.buffer[name][1],
                    self.buffer[name][0].ctypes.data,
                    self.buffer[name][2],
                    cudart.cudaMemcpyKind.cudaMemcpyHostToDevice,
                )

        self.context.execute_async_v3(stream)

        for name in self.output_allocator_map:
            myOutputAllocator = self.context.get_output_allocator(name)
            runtime_shape = myOutputAllocator.shape
            data_type = self.engine.get_tensor_dtype(name)
            host_buffer = np.empty(runtime_shape, dtype=trt.nptype(data_type))
            device_buffer = myOutputAllocator.address
            n_bytes = trt.volume(runtime_shape) * data_type.itemsize
            self.buffer[name] = [host_buffer, device_buffer, n_bytes]

        for name in self.tensor_name_list:
            if (
                self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT
                and self.engine.get_tensor_location(name) == trt.TensorLocation.DEVICE
            ):
                cudart.cudaMemcpy(
                    self.buffer[name][0].ctypes.data,
                    self.buffer[name][1],
                    self.buffer[name][2],
                    cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
                )

        return

    def infer_async(self, stream=0) -> None:
        # Do inference and print output
        for name in self.tensor_name_list:
            if (
                self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT
                and self.engine.get_tensor_location(name) == trt.TensorLocation.DEVICE
            ):
                cudart.cudaMemcpyAsync(
                    self.buffer[name][1],
                    self.buffer[name][0].ctypes.data,
                    self.buffer[name][2],
                    cudart.cudaMemcpyKind.cudaMemcpyHostToDevice,
                    stream=stream,
                )

        self.context.execute_async_v3(stream)

        for name in self.output_allocator_map:
            myOutputAllocator = self.context.get_output_allocator(name)
            runtime_shape = myOutputAllocator.shape
            data_type = self.engine.get_tensor_dtype(name)
            host_buffer = np.empty(runtime_shape, dtype=trt.nptype(data_type))
            device_buffer = myOutputAllocator.address
            n_bytes = trt.volume(runtime_shape) * data_type.itemsize
            self.buffer[name] = [host_buffer, device_buffer, n_bytes]

        for name in self.tensor_name_list:
            if (
                self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT
                and self.engine.get_tensor_location(name) == trt.TensorLocation.DEVICE
            ):
                cudart.cudaMemcpyAsync(
                    self.buffer[name][0].ctypes.data,
                    self.buffer[name][1],
                    self.buffer[name][2],
                    cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
                    stream=stream,
                )

        return

    def __del__(self):
        if hasattr(self, "buffer") and self.buffer is not None:
            for _, device_buffer, _ in self.buffer.values():
                if (
                    device_buffer is not None
                    and device_buffer != 0
                    and cudart is not None
                ):
                    try:
                        checkCudaErrors(cudart.cudaFree(device_buffer))
                    except TypeError:
                        pass
        return