Spaces:
Runtime error
Runtime error
File size: 13,101 Bytes
43f5a2b 1345fdc 43f5a2b 1345fdc 43f5a2b 1345fdc 43f5a2b 1345fdc 43f5a2b 1345fdc 43f5a2b 1345fdc 43f5a2b 1345fdc 43f5a2b 1345fdc 09ceafd 43f5a2b 1345fdc 43f5a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import shutil
import requests
from tqdm import tqdm
from pathlib import Path
import hashlib
import json
import time
class ModelManager:
def __init__(self, cache_dir="/tmp/models", use_pytorch=False):
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.use_pytorch = use_pytorch
# Hugging Face公式リポジトリからモデルを取得
base_url = "https://huggingface.co/digital-avatar/ditto-talkinghead/resolve/main"
if use_pytorch:
# PyTorchモデルの設定
self.model_configs = [
{
"name": "appearance_extractor.pth",
"url": f"{base_url}/ditto_pytorch/models/appearance_extractor.pth",
"dest_dir": "checkpoints/ditto_pytorch/models",
"dest_file": "appearance_extractor.pth",
"type": "file"
},
{
"name": "decoder.pth",
"url": f"{base_url}/ditto_pytorch/models/decoder.pth",
"dest_dir": "checkpoints/ditto_pytorch/models",
"dest_file": "decoder.pth",
"type": "file"
},
{
"name": "lmdm_v0.4_hubert.pth",
"url": f"{base_url}/ditto_pytorch/models/lmdm_v0.4_hubert.pth",
"dest_dir": "checkpoints/ditto_pytorch/models",
"dest_file": "lmdm_v0.4_hubert.pth",
"type": "file"
},
{
"name": "motion_extractor.pth",
"url": f"{base_url}/ditto_pytorch/models/motion_extractor.pth",
"dest_dir": "checkpoints/ditto_pytorch/models",
"dest_file": "motion_extractor.pth",
"type": "file"
},
{
"name": "stitch_network.pth",
"url": f"{base_url}/ditto_pytorch/models/stitch_network.pth",
"dest_dir": "checkpoints/ditto_pytorch/models",
"dest_file": "stitch_network.pth",
"type": "file"
},
{
"name": "warp_network.pth",
"url": f"{base_url}/ditto_pytorch/models/warp_network.pth",
"dest_dir": "checkpoints/ditto_pytorch/models",
"dest_file": "warp_network.pth",
"type": "file"
},
{
"name": "v0.4_hubert_cfg_pytorch.pkl",
"url": f"{base_url}/ditto_cfg/v0.4_hubert_cfg_pytorch.pkl",
"dest_dir": "checkpoints/ditto_cfg",
"dest_file": "v0.4_hubert_cfg_pytorch.pkl",
"type": "file",
"size": "31 kB"
},
# 補助モデル (aux_models)
{
"name": "2d106det.onnx",
"url": f"{base_url}/ditto_pytorch/aux_models/2d106det.onnx",
"dest_dir": "checkpoints/ditto_pytorch/aux_models",
"dest_file": "2d106det.onnx",
"type": "file",
"size": "5.03 MB"
},
{
"name": "det_10g.onnx",
"url": f"{base_url}/ditto_pytorch/aux_models/det_10g.onnx",
"dest_dir": "checkpoints/ditto_pytorch/aux_models",
"dest_file": "det_10g.onnx",
"type": "file",
"size": "16.9 MB"
},
{
"name": "face_landmarker.task",
"url": f"{base_url}/ditto_pytorch/aux_models/face_landmarker.task",
"dest_dir": "checkpoints/ditto_pytorch/aux_models",
"dest_file": "face_landmarker.task",
"type": "file",
"size": "3.76 MB"
},
{
"name": "hubert_streaming_fix_kv.onnx",
"url": f"{base_url}/ditto_pytorch/aux_models/hubert_streaming_fix_kv.onnx",
"dest_dir": "checkpoints/ditto_pytorch/aux_models",
"dest_file": "hubert_streaming_fix_kv.onnx",
"type": "file",
"size": "1.46 GB"
},
{
"name": "landmark203.onnx",
"url": f"{base_url}/ditto_pytorch/aux_models/landmark203.onnx",
"dest_dir": "checkpoints/ditto_pytorch/aux_models",
"dest_file": "landmark203.onnx",
"type": "file",
"size": "115 MB"
}
]
else:
# TensorRTモデルの設定
self.model_configs = [
{
"name": "ditto_trt_models",
"url": os.environ.get("DITTO_TRT_URL", f"{base_url}/checkpoints/ditto_trt_Ampere_Plus.tar.gz"),
"dest_dir": "checkpoints",
"type": "archive",
"extract_subdir": "ditto_trt_Ampere_Plus"
},
{
"name": "v0.4_hubert_cfg_trt.pkl",
"url": f"{base_url}/ditto_cfg/v0.4_hubert_cfg_trt.pkl",
"dest_dir": "checkpoints/ditto_cfg",
"dest_file": "v0.4_hubert_cfg_trt.pkl",
"type": "file"
}
]
self.progress_file = self.cache_dir / "download_progress.json"
self.download_progress = self.load_progress()
def load_progress(self):
"""ダウンロード進捗の読み込み"""
if self.progress_file.exists():
with open(self.progress_file, 'r') as f:
return json.load(f)
return {}
def save_progress(self):
"""ダウンロード進捗の保存"""
with open(self.progress_file, 'w') as f:
json.dump(self.download_progress, f)
def get_file_hash(self, filepath):
"""ファイルのハッシュ値を計算"""
sha256_hash = hashlib.sha256()
with open(filepath, "rb") as f:
for byte_block in iter(lambda: f.read(4096), b""):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
def download_file(self, url, dest_path, retries=3):
"""ファイルのダウンロード(レジューム対応)"""
dest_path = Path(dest_path)
dest_path.parent.mkdir(parents=True, exist_ok=True)
headers = {}
mode = 'wb'
resume_pos = 0
# レジューム処理
if dest_path.exists():
resume_pos = dest_path.stat().st_size
headers['Range'] = f'bytes={resume_pos}-'
mode = 'ab'
for attempt in range(retries):
try:
response = requests.get(url, headers=headers, stream=True, timeout=30)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
if resume_pos > 0:
total_size += resume_pos
with open(dest_path, mode) as f:
with tqdm(total=total_size, initial=resume_pos, unit='B', unit_scale=True, desc=dest_path.name) as pbar:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
pbar.update(len(chunk))
return True
except Exception as e:
print(f"ダウンロードエラー (試行 {attempt + 1}/{retries}): {e}")
if attempt < retries - 1:
time.sleep(5) # 再試行前に待機
else:
raise
return False
def extract_archive(self, archive_path, dest_dir, extract_subdir=None):
"""アーカイブの展開"""
import tarfile
import zipfile
archive_path = Path(archive_path)
dest_dir = Path(dest_dir)
temp_dir = dest_dir / "temp_extract"
try:
if archive_path.suffix == '.gz' or archive_path.suffix == '.tar' or str(archive_path).endswith('.tar.gz'):
with tarfile.open(archive_path, 'r:*') as tar:
if extract_subdir:
# 一時ディレクトリに展開してから移動
temp_dir.mkdir(exist_ok=True)
tar.extractall(temp_dir)
# 特定のサブディレクトリを移動
src_dir = temp_dir / extract_subdir
if src_dir.exists():
shutil.move(str(src_dir), str(dest_dir / extract_subdir))
shutil.rmtree(temp_dir)
else:
tar.extractall(dest_dir)
elif archive_path.suffix == '.zip':
with zipfile.ZipFile(archive_path, 'r') as zip_ref:
zip_ref.extractall(dest_dir)
else:
raise ValueError(f"Unsupported archive format: {archive_path.suffix}")
except Exception as e:
if temp_dir.exists():
shutil.rmtree(temp_dir)
raise e
def check_models_exist(self):
"""必要なモデルが存在するかチェック"""
missing_models = []
for config in self.model_configs:
if config['type'] == 'file':
dest_path = Path(config['dest_dir']) / config['dest_file']
if not dest_path.exists():
missing_models.append(config)
else: # archive
dest_dir = Path(config['dest_dir'])
if not dest_dir.exists() or not any(dest_dir.iterdir()):
missing_models.append(config)
return missing_models
def download_models(self):
"""必要なモデルをダウンロード"""
missing_models = self.check_models_exist()
if not missing_models:
print("すべてのモデルが既に存在します。")
return True
print(f"{len(missing_models)}個のモデルをダウンロードします...")
for config in missing_models:
size_info = config.get('size', '不明')
print(f"\n{config['name']} をダウンロード中... (サイズ: {size_info})")
# キャッシュパスの設定
cache_filename = f"{config['name']}.download"
cache_path = self.cache_dir / cache_filename
try:
# ダウンロード
if not cache_path.exists() or self.download_progress.get(config['name'], {}).get('status') != 'completed':
self.download_file(config['url'], cache_path)
self.download_progress[config['name']] = {'status': 'completed'}
self.save_progress()
# 展開またはコピー
if config['type'] == 'file':
dest_dir = Path(config['dest_dir'])
dest_dir.mkdir(parents=True, exist_ok=True)
dest_path = dest_dir / config['dest_file']
shutil.copy2(cache_path, dest_path)
else: # archive
dest_dir = Path(config['dest_dir'])
dest_dir.mkdir(parents=True, exist_ok=True)
print(f"{config['name']} を展開中...")
extract_subdir = config.get('extract_subdir')
self.extract_archive(cache_path, dest_dir, extract_subdir)
print(f"{config['name']} のセットアップ完了")
except Exception as e:
print(f"エラー: {config['name']} のダウンロード中にエラーが発生しました: {e}")
return False
return True
def setup_models(self):
"""モデルのセットアップ(メイン処理)"""
print("=== DittoTalkingHead モデルセットアップ ===")
print(f"キャッシュディレクトリ: {self.cache_dir}")
success = self.download_models()
if success:
print("\n✅ すべてのモデルのセットアップが完了しました!")
else:
print("\n❌ モデルのセットアップ中にエラーが発生しました。")
return success
if __name__ == "__main__":
# テスト実行
manager = ModelManager()
manager.setup_models() |