File size: 5,283 Bytes
ac7cda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import torch
import argparse


def onnx_to_trt(onnx_file, trt_file, fp16=False, more_cmd=None):
    cap = torch.cuda.get_device_capability()
    if cap[0] >= 8:
        compatiable = "--hardware-compatibility-level=Ampere_Plus"
    else:
        compatiable = ""
    cmd = [
        "polygraphy",
        "convert",
        onnx_file,
        "-o",
        trt_file,
        compatiable,
        "--fp16" if fp16 else "",
        f"--builder-optimization-level=5",
    ]
    if more_cmd:
        cmd = cmd + more_cmd
    print(" ".join(cmd))
    os.system(" ".join(cmd))


def onnx_to_trt_for_gridsample(onnx_file, trt_file, fp16=False, plugin_file="./libgrid_sample_3d_plugin.so"):
    import tensorrt as trt

    logger = trt.Logger(trt.Logger.INFO)
    trt.init_libnvinfer_plugins(logger, "")
    plugin_libs = [plugin_file]

    onnx_path = onnx_file
    engine_path = trt_file

    builder = trt.Builder(logger)
    for pluginlib in plugin_libs:
        builder.get_plugin_registry().load_library(pluginlib)
    network = builder.create_network(
        1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    )

    parser = trt.OnnxParser(network, logger)
    res = parser.parse_from_file(onnx_path)  # parse from file
    if not res:
        print(f"Fail parsing {onnx_path}")
        for i in range(parser.num_errors):  # Get error information
            error = parser.get_error(i)
            print(error)  # Print error information
            print(
                f"{error.code() = }\n{error.file() = }\n{error.func() = }\n{error.line() = }\n{error.local_function_stack_size() = }"
            )
            print(
                f"{error.local_function_stack() = }\n{error.node_name() = }\n{error.node_operator() = }\n{error.node() = }"
            )
        parser.clear_errors()
    config = builder.create_builder_config()
    # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32)
    config.builder_optimization_level = 5
    # Set the flag of hardware compatibility, Hardware-compatible engines are only supported on Ampere and beyond
    cap = torch.cuda.get_device_capability()
    if cap[0] >= 8:
        compatible = True
    else:
        compatible = False

    if compatible:
        config.hardware_compatibility_level = (
            trt.HardwareCompatibilityLevel.AMPERE_PLUS
        )

    if fp16:
        config.set_flag(trt.BuilderFlag.FP16)
        config.set_flag(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS)
    config.set_preview_feature(trt.PreviewFeature.PROFILE_SHARING_0806, True)
    exclude_list = [
        "SHAPE",
        "ASSERTION",
        "SHUFFLE",
        "IDENTITY",
        "CONSTANT",
        "CONCATENATION",
        "GATHER",
        "SLICE",
        "CONDITION",
        "CONDITIONAL_INPUT",
        "CONDITIONAL_OUTPUT",
        "FILL",
        "NON_ZERO",
        "ONE_HOT",
    ]
    for i in range(0, network.num_layers):
        layer = network.get_layer(i)
        if str(layer.type)[10:] in exclude_list:
            continue
        if "GridSample" in layer.name:
            print(f"set {layer.name} to float32")
            layer.precision = trt.float32
    config.plugins_to_serialize = plugin_libs
    engineString = builder.build_serialized_network(network, config)
    if engineString is not None:
        with open(engine_path, "wb") as f:
            f.write(engineString)


def main(onnx_dir, trt_dir, grid_sample_plugin_file=""):
    names = [i[:-5] for i in os.listdir(onnx_dir) if i.endswith(".onnx")]
    for name in names:
        if name == "warp_network_ori":
            continue
        
        print("=" * 20, f"{name} start", "=" * 20)

        fp16 = False if name in {"motion_extractor", "hubert", "wavlm"} or name.startswith("lmdm") else True

        more_cmd = None
        if name == "wavlm":
            more_cmd = [
                "--trt-min-shapes audio:[1,1000]",
                "--trt-max-shapes audio:[1,320080]",
                "--trt-opt-shapes audio:[1,320080]",
            ]
        elif name == "hubert":
            more_cmd = [
                "--trt-min-shapes input_values:[1,3240]",
                "--trt-max-shapes input_values:[1,12960]",
                "--trt-opt-shapes input_values:[1,6480]",
            ]


        onnx_file = f"{onnx_dir}/{name}.onnx"
        trt_file = f"{trt_dir}/{name}_fp{16 if fp16 else 32}.engine"

        if os.path.isfile(trt_file):
            print("=" * 20, f"{name} skip", "=" * 20)
            continue

        if name == "warp_network":
            onnx_to_trt_for_gridsample(onnx_file, trt_file, fp16, plugin_file=grid_sample_plugin_file)
        else:
            onnx_to_trt(onnx_file, trt_file, fp16, more_cmd=more_cmd)

        print("=" * 20, f"{name} done", "=" * 20)



if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--onnx_dir", type=str, help="input onnx dir")
    parser.add_argument("--trt_dir", type=str, help="output trt dir")
    args = parser.parse_args()

    onnx_dir = args.onnx_dir
    trt_dir = args.trt_dir

    assert os.path.isdir(onnx_dir)
    os.makedirs(trt_dir, exist_ok=True)

    grid_sample_plugin_file = os.path.join(onnx_dir, "libgrid_sample_3d_plugin.so")
    main(onnx_dir, trt_dir, grid_sample_plugin_file)