Spaces:
Runtime error
Runtime error
from __future__ import division | |
import numpy as np | |
import torch | |
import cv2 | |
from skimage import transform as trans | |
from ..utils.load_model import load_model | |
def transform(data, center, output_size, scale, rotation): | |
scale_ratio = scale | |
rot = float(rotation) * np.pi / 180.0 | |
t1 = trans.SimilarityTransform(scale=scale_ratio) | |
cx = center[0] * scale_ratio | |
cy = center[1] * scale_ratio | |
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
t3 = trans.SimilarityTransform(rotation=rot) | |
t4 = trans.SimilarityTransform(translation=(output_size / 2, | |
output_size / 2)) | |
t = t1 + t2 + t3 + t4 | |
M = t.params[0:2] | |
cropped = cv2.warpAffine(data, | |
M, (output_size, output_size), | |
borderValue=0.0) | |
return cropped, M | |
def trans_points2d(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
class Landmark106: | |
def __init__(self, model_path, device="cuda", **kwargs): | |
kwargs["model_file"] = model_path | |
kwargs["module_name"] = "Landmark106" | |
kwargs["package_name"] = "..aux_models.modules" | |
self.model, self.model_type = load_model(model_path, device=device, **kwargs) | |
self.device = device | |
if self.model_type != "ori": | |
self._init_vars() | |
def _init_vars(self): | |
self.input_mean = 0.0 | |
self.input_std = 1.0 | |
self.input_size = (192, 192) | |
self.lmk_num = 106 | |
self.output_names = ["fc1"] | |
def _run_model(self, blob): | |
if self.model_type == "onnx": | |
pred = self.model.run(None, {"data": blob})[0] | |
elif self.model_type == "tensorrt": | |
self.model.setup({"data": blob}) | |
self.model.infer() | |
pred = self.model.buffer[self.output_names[0]][0] | |
else: | |
raise ValueError(f"Unsupported model type: {self.model_type}") | |
return pred | |
def get(self, img, bbox): | |
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
rotate = 0 | |
_scale = self.input_size[0] / (max(w, h)*1.5) | |
aimg, M = transform(img, center, self.input_size[0], _scale, rotate) | |
input_size = tuple(aimg.shape[0:2][::-1]) | |
blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
pred = self._run_model(blob) | |
pred = pred.reshape((-1, 2)) | |
if self.lmk_num < pred.shape[0]: | |
pred = pred[self.lmk_num*-1:,:] | |
pred[:, 0:2] += 1 | |
pred[:, 0:2] *= (self.input_size[0] // 2) | |
IM = cv2.invertAffineTransform(M) | |
pred = trans_points2d(pred, IM) | |
return pred | |
def __call__(self, img, bbox): | |
if self.model_type == "ori": | |
pred = self.model.get(img, bbox) | |
else: | |
pred = self.get(img, bbox) | |
return pred | |