Spaces:
Runtime error
Runtime error
`.gitignore`に`tests/`を追加し、`README.md`のAPIドキュメントセクションを更新しました。また、`test_api_client.py`、`test_api.py`、`test_performance_optimized.py`、`test_performance.py`のテストスクリプトを削除しました。
Browse files- .gitignore +1 -0
- README.md +7 -3
- test_api.py +0 -102
- test_api_client.py +0 -220
- test_performance.py +0 -175
- test_performance_optimized.py +0 -375
.gitignore
CHANGED
@@ -38,6 +38,7 @@ log/*
|
|
38 |
example/
|
39 |
ToDo/
|
40 |
docs/
|
|
|
41 |
|
42 |
|
43 |
!example/audio.wav
|
|
|
38 |
example/
|
39 |
ToDo/
|
40 |
docs/
|
41 |
+
tests/
|
42 |
|
43 |
|
44 |
!example/audio.wav
|
README.md
CHANGED
@@ -74,8 +74,12 @@ python test_api_client.py
|
|
74 |
- **処理速度**: 16秒の音声を約15秒で処理(Phase 3最適化により50-65%高速化)
|
75 |
|
76 |
## ドキュメント
|
77 |
-
- [APIドキュメント](docs/
|
78 |
-
- [
|
79 |
-
- [
|
|
|
|
|
|
|
|
|
80 |
|
81 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
74 |
- **処理速度**: 16秒の音声を約15秒で処理(Phase 3最適化により50-65%高速化)
|
75 |
|
76 |
## ドキュメント
|
77 |
+
- 📁 **[APIドキュメント](docs/api/)** - リアルタイムを超える動画生成APIの全ドキュメント
|
78 |
+
- 🚀 [統合ガイド](docs/api/integration_guide.md) - 完全なAPIインテグレーションガイド
|
79 |
+
- ⚡ [クイックリファレンス](docs/api/quick_reference.md) - 5分で実装できるクイックスタート
|
80 |
+
- 📝 [API仕様書](docs/api/documentation.md) - 詳細なAPI仕様とサンプルコード
|
81 |
+
- 💻 [統合サンプル集](docs/api/integration_examples.py) - 実装例とベストプラクティス
|
82 |
+
- 📋 [Phase2実装仕様](ToDo/0717-2_Phase2_API_SOW.md) - API実装の詳細
|
83 |
+
- 🔧 [Phase3最適化ガイド](docs/phase3_optimization_guide.md) - パフォーマンス最適化の詳細
|
84 |
|
85 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
test_api.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
DittoTalkingHead API テストスクリプト
|
4 |
-
簡単なAPIテストを実行します
|
5 |
-
"""
|
6 |
-
|
7 |
-
import logging
|
8 |
-
import sys
|
9 |
-
from test_api_client import TalkingHeadAPIClient
|
10 |
-
|
11 |
-
# ロギング設定
|
12 |
-
logging.basicConfig(
|
13 |
-
level=logging.INFO,
|
14 |
-
format='%(asctime)s - %(message)s',
|
15 |
-
datefmt='%Y-%m-%d %H:%M:%S'
|
16 |
-
)
|
17 |
-
|
18 |
-
def test_basic_functionality():
|
19 |
-
"""基本機能のテスト"""
|
20 |
-
logging.info("=== 基本機能テスト開始 ===")
|
21 |
-
|
22 |
-
# クライアント初期化
|
23 |
-
client = TalkingHeadAPIClient()
|
24 |
-
|
25 |
-
# サンプルファイルを使用
|
26 |
-
audio_path = "example/audio.wav"
|
27 |
-
image_path = "example/image.png"
|
28 |
-
|
29 |
-
try:
|
30 |
-
# 動画生成
|
31 |
-
logging.info(f"接続開始: O-ken5481/talkingAvater_bgk")
|
32 |
-
logging.info(f"ファイルアップロード: {audio_path}, {image_path}")
|
33 |
-
logging.info("処理開始...")
|
34 |
-
|
35 |
-
result = client.generate_video(audio_path, image_path)
|
36 |
-
video_path, status = result
|
37 |
-
|
38 |
-
if video_path:
|
39 |
-
logging.info("動画生成完了")
|
40 |
-
|
41 |
-
# タイムスタンプ付きで保存
|
42 |
-
if isinstance(video_path, dict) and 'video' in video_path:
|
43 |
-
saved_path = client.save_with_timestamp(video_path['video'])
|
44 |
-
if saved_path:
|
45 |
-
logging.info(f"保存完了: {saved_path}")
|
46 |
-
print(f"\n✅ テスト成功!")
|
47 |
-
print(f"ステータス: {status}")
|
48 |
-
print(f"保存先: {saved_path}")
|
49 |
-
return True
|
50 |
-
|
51 |
-
print(f"\n❌ テスト失敗")
|
52 |
-
print(f"ステータス: {status}")
|
53 |
-
return False
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
logging.error(f"エラー発生: {e}")
|
57 |
-
return False
|
58 |
-
|
59 |
-
def test_error_handling():
|
60 |
-
"""エラーハンドリングのテスト"""
|
61 |
-
logging.info("\n=== エラーハンドリングテスト開始 ===")
|
62 |
-
|
63 |
-
client = TalkingHeadAPIClient()
|
64 |
-
|
65 |
-
# 存在しないファイルでテスト
|
66 |
-
result = client.generate_video("nonexistent.wav", "nonexistent.png")
|
67 |
-
video_path, status = result
|
68 |
-
|
69 |
-
if video_path is None and "見つかりません" in status:
|
70 |
-
logging.info("✅ ファイル不在エラーを正しく検出")
|
71 |
-
return True
|
72 |
-
else:
|
73 |
-
logging.error("❌ エラーハンドリングが正しく動作していません")
|
74 |
-
return False
|
75 |
-
|
76 |
-
def main():
|
77 |
-
"""メイン関数"""
|
78 |
-
print("DittoTalkingHead API テスト")
|
79 |
-
print("=" * 50)
|
80 |
-
|
81 |
-
# 基本機能テスト
|
82 |
-
basic_test_passed = test_basic_functionality()
|
83 |
-
|
84 |
-
# エラーハンドリングテスト
|
85 |
-
error_test_passed = test_error_handling()
|
86 |
-
|
87 |
-
# 結果サマリー
|
88 |
-
print("\n" + "=" * 50)
|
89 |
-
print("テスト結果:")
|
90 |
-
print(f"- 基本機能テスト: {'✅ 成功' if basic_test_passed else '❌ 失敗'}")
|
91 |
-
print(f"- エラーハンドリングテスト: {'✅ 成功' if error_test_passed else '❌ 失敗'}")
|
92 |
-
|
93 |
-
# 終了コード
|
94 |
-
if basic_test_passed and error_test_passed:
|
95 |
-
print("\n全てのテストが成功しました! 🎉")
|
96 |
-
sys.exit(0)
|
97 |
-
else:
|
98 |
-
print("\n一部のテストが失敗しました。")
|
99 |
-
sys.exit(1)
|
100 |
-
|
101 |
-
if __name__ == "__main__":
|
102 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_api_client.py
DELETED
@@ -1,220 +0,0 @@
|
|
1 |
-
from gradio_client import Client, handle_file
|
2 |
-
from datetime import datetime
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
import logging
|
6 |
-
import time
|
7 |
-
from typing import Tuple, Optional
|
8 |
-
|
9 |
-
class TalkingHeadAPIClient:
|
10 |
-
"""DittoTalkingHead API クライアント"""
|
11 |
-
|
12 |
-
def __init__(self, space_name: str = "O-ken5481/talkingAvater_bgk", max_retries: int = 3, retry_delay: int = 5):
|
13 |
-
"""
|
14 |
-
Args:
|
15 |
-
space_name: Hugging Face SpaceのID(デフォルト: O-ken5481/talkingAvater_bgk)
|
16 |
-
max_retries: 最大リトライ回数
|
17 |
-
retry_delay: リトライ間隔(秒)
|
18 |
-
"""
|
19 |
-
self.space_name = space_name
|
20 |
-
self.max_retries = max_retries
|
21 |
-
self.retry_delay = retry_delay
|
22 |
-
self.logger = self._setup_logger()
|
23 |
-
self.client = None
|
24 |
-
self._connect()
|
25 |
-
|
26 |
-
def _setup_logger(self) -> logging.Logger:
|
27 |
-
"""ロガーの設定"""
|
28 |
-
logger = logging.getLogger('TalkingHeadAPIClient')
|
29 |
-
logger.setLevel(logging.INFO)
|
30 |
-
|
31 |
-
if not logger.handlers:
|
32 |
-
handler = logging.StreamHandler()
|
33 |
-
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s',
|
34 |
-
datefmt='%Y-%m-%d %H:%M:%S')
|
35 |
-
handler.setFormatter(formatter)
|
36 |
-
logger.addHandler(handler)
|
37 |
-
|
38 |
-
return logger
|
39 |
-
|
40 |
-
def _connect(self) -> None:
|
41 |
-
"""APIへの接続"""
|
42 |
-
for attempt in range(self.max_retries):
|
43 |
-
try:
|
44 |
-
self.logger.info(f"接続開始: {self.space_name} (試行 {attempt + 1}/{self.max_retries})")
|
45 |
-
self.client = Client(self.space_name)
|
46 |
-
self.logger.info("接続成功")
|
47 |
-
return
|
48 |
-
except Exception as e:
|
49 |
-
self.logger.error(f"接続失敗: {e}")
|
50 |
-
if attempt < self.max_retries - 1:
|
51 |
-
self.logger.info(f"{self.retry_delay}秒後にリトライします...")
|
52 |
-
time.sleep(self.retry_delay)
|
53 |
-
else:
|
54 |
-
raise ConnectionError(f"APIへの接続に失敗しました: {e}")
|
55 |
-
|
56 |
-
def generate_video(self, audio_path: str, image_path: str) -> Tuple[Optional[dict], str]:
|
57 |
-
"""
|
58 |
-
API経由で動画生成
|
59 |
-
|
60 |
-
Args:
|
61 |
-
audio_path: 音声ファイルのパス
|
62 |
-
image_path: 画像ファイルのパス
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
tuple: (video_data, status_message)
|
66 |
-
"""
|
67 |
-
# ファイルの存在確認
|
68 |
-
if not os.path.exists(audio_path):
|
69 |
-
error_msg = f"音声ファイルが見つかりません: {audio_path}"
|
70 |
-
self.logger.error(error_msg)
|
71 |
-
return None, error_msg
|
72 |
-
|
73 |
-
if not os.path.exists(image_path):
|
74 |
-
error_msg = f"画像ファイルが見つかりません: {image_path}"
|
75 |
-
self.logger.error(error_msg)
|
76 |
-
return None, error_msg
|
77 |
-
|
78 |
-
# API呼び出し
|
79 |
-
for attempt in range(self.max_retries):
|
80 |
-
try:
|
81 |
-
self.logger.info(f"ファイルアップロード: {audio_path}, {image_path}")
|
82 |
-
self.logger.info("処理開始...")
|
83 |
-
|
84 |
-
result = self.client.predict(
|
85 |
-
audio_file=handle_file(audio_path),
|
86 |
-
source_image=handle_file(image_path),
|
87 |
-
api_name="/process_talking_head"
|
88 |
-
)
|
89 |
-
|
90 |
-
self.logger.info("動画生成完了")
|
91 |
-
return result
|
92 |
-
|
93 |
-
except Exception as e:
|
94 |
-
self.logger.error(f"処理エラー (試行 {attempt + 1}/{self.max_retries}): {e}")
|
95 |
-
if attempt < self.max_retries - 1:
|
96 |
-
self.logger.info(f"{self.retry_delay}秒後にリトライします...")
|
97 |
-
time.sleep(self.retry_delay)
|
98 |
-
else:
|
99 |
-
error_msg = f"動画生成に失敗しました: {e}"
|
100 |
-
return None, error_msg
|
101 |
-
|
102 |
-
def save_with_timestamp(self, video_path: str, output_dir: str = "example") -> Optional[str]:
|
103 |
-
"""
|
104 |
-
動画をタイムスタンプ付きで保存
|
105 |
-
|
106 |
-
Args:
|
107 |
-
video_path: 生成された動画のパス
|
108 |
-
output_dir: 保存先ディレクトリ
|
109 |
-
|
110 |
-
Returns:
|
111 |
-
str: 保存されたファイルパス(エラー時はNone)
|
112 |
-
"""
|
113 |
-
try:
|
114 |
-
# 動画パスの確認
|
115 |
-
if not video_path or not os.path.exists(video_path):
|
116 |
-
self.logger.error(f"動画ファイルが見つかりません: {video_path}")
|
117 |
-
return None
|
118 |
-
|
119 |
-
# 出力ディレクトリの作成
|
120 |
-
os.makedirs(output_dir, exist_ok=True)
|
121 |
-
|
122 |
-
# YYYY-MM-DD_HH-MM-SS.mp4 形式で保存
|
123 |
-
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
124 |
-
output_path = os.path.join(output_dir, f"{timestamp}.mp4")
|
125 |
-
|
126 |
-
# ファイルをコピー
|
127 |
-
shutil.copy2(video_path, output_path)
|
128 |
-
|
129 |
-
# ファイルサイズの確認
|
130 |
-
file_size = os.path.getsize(output_path)
|
131 |
-
self.logger.info(f"保存完了: {output_path} (サイズ: {file_size:,} bytes)")
|
132 |
-
|
133 |
-
return output_path
|
134 |
-
|
135 |
-
except Exception as e:
|
136 |
-
self.logger.error(f"保存エラー: {e}")
|
137 |
-
return None
|
138 |
-
|
139 |
-
def process_with_save(self, audio_path: str, image_path: str, output_dir: str = "example") -> Tuple[Optional[str], str]:
|
140 |
-
"""
|
141 |
-
動画生成と保存を一括実行
|
142 |
-
|
143 |
-
Args:
|
144 |
-
audio_path: 音声ファイルのパス
|
145 |
-
image_path: 画像ファイルのパス
|
146 |
-
output_dir: 保存先ディレクトリ
|
147 |
-
|
148 |
-
Returns:
|
149 |
-
tuple: (saved_path, status_message)
|
150 |
-
"""
|
151 |
-
# 動画生成
|
152 |
-
result = self.generate_video(audio_path, image_path)
|
153 |
-
|
154 |
-
if result[0] is None:
|
155 |
-
return None, result[1]
|
156 |
-
|
157 |
-
video_data, status = result
|
158 |
-
|
159 |
-
# 動画の保存
|
160 |
-
if isinstance(video_data, dict) and 'video' in video_data:
|
161 |
-
saved_path = self.save_with_timestamp(video_data['video'], output_dir)
|
162 |
-
if saved_path:
|
163 |
-
return saved_path, f"{status}\n保存先: {saved_path}"
|
164 |
-
else:
|
165 |
-
return None, f"{status}\n保存に失敗しました"
|
166 |
-
else:
|
167 |
-
return None, f"予期しないレスポンス形式: {video_data}"
|
168 |
-
|
169 |
-
|
170 |
-
def main():
|
171 |
-
"""テストスクリプトのメイン関数"""
|
172 |
-
# ロギング設定
|
173 |
-
logging.basicConfig(
|
174 |
-
level=logging.INFO,
|
175 |
-
format='%(asctime)s - %(message)s',
|
176 |
-
datefmt='%Y-%m-%d %H:%M:%S'
|
177 |
-
)
|
178 |
-
|
179 |
-
# クライアント初期化
|
180 |
-
try:
|
181 |
-
client = TalkingHeadAPIClient()
|
182 |
-
except Exception as e:
|
183 |
-
logging.error(f"クライアント初期化失敗: {e}")
|
184 |
-
return
|
185 |
-
|
186 |
-
# サンプルファイルを使用
|
187 |
-
audio_path = "example/audio.wav"
|
188 |
-
image_path = "example/image.png"
|
189 |
-
|
190 |
-
# ファイルの存在確認
|
191 |
-
if not os.path.exists(audio_path):
|
192 |
-
logging.error(f"音声ファイルが見つかりません: {audio_path}")
|
193 |
-
return
|
194 |
-
|
195 |
-
if not os.path.exists(image_path):
|
196 |
-
logging.error(f"画像ファイルが見つかりません: {image_path}")
|
197 |
-
return
|
198 |
-
|
199 |
-
try:
|
200 |
-
# 動画生成と保存
|
201 |
-
saved_path, status = client.process_with_save(audio_path, image_path)
|
202 |
-
|
203 |
-
if saved_path:
|
204 |
-
print(f"\n✅ 成功!")
|
205 |
-
print(f"ステータス: {status}")
|
206 |
-
print(f"動画を確認してください: {saved_path}")
|
207 |
-
else:
|
208 |
-
print(f"\n❌ 失敗")
|
209 |
-
print(f"ステータス: {status}")
|
210 |
-
|
211 |
-
except KeyboardInterrupt:
|
212 |
-
logging.info("処理を中断しました")
|
213 |
-
except Exception as e:
|
214 |
-
logging.error(f"予期しないエラー: {e}")
|
215 |
-
import traceback
|
216 |
-
traceback.print_exc()
|
217 |
-
|
218 |
-
|
219 |
-
if __name__ == "__main__":
|
220 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_performance.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
パフォーマンステストスクリプト
|
4 |
-
動画生成の各ステップの実行時間を計測
|
5 |
-
"""
|
6 |
-
|
7 |
-
import time
|
8 |
-
import logging
|
9 |
-
from test_api_client import TalkingHeadAPIClient
|
10 |
-
import os
|
11 |
-
|
12 |
-
# ロギング設定
|
13 |
-
logging.basicConfig(
|
14 |
-
level=logging.INFO,
|
15 |
-
format='%(asctime)s - %(message)s',
|
16 |
-
datefmt='%Y-%m-%d %H:%M:%S'
|
17 |
-
)
|
18 |
-
|
19 |
-
class TimingStats:
|
20 |
-
def __init__(self):
|
21 |
-
self.stats = {}
|
22 |
-
self.start_times = {}
|
23 |
-
|
24 |
-
def start(self, name):
|
25 |
-
self.start_times[name] = time.time()
|
26 |
-
|
27 |
-
def end(self, name):
|
28 |
-
if name in self.start_times:
|
29 |
-
duration = time.time() - self.start_times[name]
|
30 |
-
self.stats[name] = duration
|
31 |
-
return duration
|
32 |
-
return None
|
33 |
-
|
34 |
-
def report(self):
|
35 |
-
print("\n=== パフォーマンス計測結果 ===")
|
36 |
-
total_time = sum(self.stats.values())
|
37 |
-
for name, duration in self.stats.items():
|
38 |
-
percentage = (duration / total_time) * 100 if total_time > 0 else 0
|
39 |
-
print(f"{name}: {duration:.2f}秒 ({percentage:.1f}%)")
|
40 |
-
print(f"\n合計時間: {total_time:.2f}秒")
|
41 |
-
|
42 |
-
# 音声ファイルの長さを取得
|
43 |
-
try:
|
44 |
-
import librosa
|
45 |
-
audio_path = "example/audio.wav"
|
46 |
-
y, sr = librosa.load(audio_path, sr=None)
|
47 |
-
audio_duration = len(y) / sr
|
48 |
-
print(f"音声ファイルの長さ: {audio_duration:.2f}秒")
|
49 |
-
print(f"処理時間比率: {total_time/audio_duration:.2f}x")
|
50 |
-
except Exception as e:
|
51 |
-
print(f"音声長さの取得失敗: {e}")
|
52 |
-
|
53 |
-
def test_performance():
|
54 |
-
"""パフォーマンステストを実行"""
|
55 |
-
timer = TimingStats()
|
56 |
-
|
57 |
-
# 全体の開始時間
|
58 |
-
timer.start("全体処理")
|
59 |
-
|
60 |
-
# クライアント初期化
|
61 |
-
timer.start("API接続")
|
62 |
-
try:
|
63 |
-
client = TalkingHeadAPIClient()
|
64 |
-
timer.end("API接続")
|
65 |
-
except Exception as e:
|
66 |
-
logging.error(f"クライアント初期化失敗: {e}")
|
67 |
-
return
|
68 |
-
|
69 |
-
# サンプルファイル
|
70 |
-
audio_path = "example/audio.wav"
|
71 |
-
image_path = "example/image.png"
|
72 |
-
|
73 |
-
# ファイル情報を表示
|
74 |
-
audio_size = os.path.getsize(audio_path) / 1024 / 1024 # MB
|
75 |
-
image_size = os.path.getsize(image_path) / 1024 / 1024 # MB
|
76 |
-
print(f"\n入力ファイル情報:")
|
77 |
-
print(f"- 音声: {audio_path} ({audio_size:.2f} MB)")
|
78 |
-
print(f"- 画像: {image_path} ({image_size:.2f} MB)")
|
79 |
-
|
80 |
-
# 動画生成
|
81 |
-
timer.start("動画生成(API呼び出し)")
|
82 |
-
try:
|
83 |
-
result = client.generate_video(audio_path, image_path)
|
84 |
-
video_data, status = result
|
85 |
-
timer.end("動画生成(API呼び出し)")
|
86 |
-
|
87 |
-
if video_data:
|
88 |
-
# 保存処理
|
89 |
-
timer.start("動画保存")
|
90 |
-
if isinstance(video_data, dict) and 'video' in video_data:
|
91 |
-
saved_path = client.save_with_timestamp(video_data['video'])
|
92 |
-
timer.end("動画保存")
|
93 |
-
|
94 |
-
# 出力ファイル情報
|
95 |
-
output_size = os.path.getsize(saved_path) / 1024 / 1024 # MB
|
96 |
-
print(f"\n出力ファイル情報:")
|
97 |
-
print(f"- 動画: {saved_path} ({output_size:.2f} MB)")
|
98 |
-
|
99 |
-
timer.end("全体処理")
|
100 |
-
timer.report()
|
101 |
-
|
102 |
-
print(f"\n✅ テスト成功!")
|
103 |
-
print(f"ステータス: {status}")
|
104 |
-
else:
|
105 |
-
print(f"\n❌ テスト失敗")
|
106 |
-
print(f"ステータス: {status}")
|
107 |
-
|
108 |
-
except Exception as e:
|
109 |
-
logging.error(f"エラー発生: {e}")
|
110 |
-
import traceback
|
111 |
-
traceback.print_exc()
|
112 |
-
|
113 |
-
def test_multiple_runs(runs=3):
|
114 |
-
"""複数回実行して平均時間を計測"""
|
115 |
-
print(f"\n=== {runs}回連続実行テスト ===")
|
116 |
-
|
117 |
-
times = []
|
118 |
-
for i in range(runs):
|
119 |
-
print(f"\n--- 実行 {i+1}/{runs} ---")
|
120 |
-
start = time.time()
|
121 |
-
|
122 |
-
try:
|
123 |
-
client = TalkingHeadAPIClient()
|
124 |
-
result = client.generate_video("example/audio.wav", "example/image.png")
|
125 |
-
if result[0]:
|
126 |
-
duration = time.time() - start
|
127 |
-
times.append(duration)
|
128 |
-
print(f"実行時間: {duration:.2f}秒")
|
129 |
-
except Exception as e:
|
130 |
-
print(f"エラー: {e}")
|
131 |
-
|
132 |
-
if times:
|
133 |
-
avg_time = sum(times) / len(times)
|
134 |
-
min_time = min(times)
|
135 |
-
max_time = max(times)
|
136 |
-
print(f"\n=== 統計 ===")
|
137 |
-
print(f"平均時間: {avg_time:.2f}秒")
|
138 |
-
print(f"最小時間: {min_time:.2f}秒")
|
139 |
-
print(f"最大時間: {max_time:.2f}秒")
|
140 |
-
|
141 |
-
def analyze_bottlenecks():
|
142 |
-
"""ボトルネック分析のための詳細テスト"""
|
143 |
-
print("\n=== ボトルネック分析 ===")
|
144 |
-
|
145 |
-
# ローカルファイルの読み込み時間
|
146 |
-
start = time.time()
|
147 |
-
with open("example/audio.wav", "rb") as f:
|
148 |
-
audio_data = f.read()
|
149 |
-
with open("example/image.png", "rb") as f:
|
150 |
-
image_data = f.read()
|
151 |
-
local_read_time = time.time() - start
|
152 |
-
print(f"ローカルファイル読み込み: {local_read_time:.3f}秒")
|
153 |
-
|
154 |
-
# ネットワーク遅延の推定(Hugging Face Spaceへのping相当)
|
155 |
-
import requests
|
156 |
-
start = time.time()
|
157 |
-
try:
|
158 |
-
response = requests.get("https://o-ken5481-talkingavater-bgk.hf.space", timeout=10)
|
159 |
-
network_time = time.time() - start
|
160 |
-
print(f"ネットワーク遅延(推定): {network_time:.3f}秒")
|
161 |
-
except:
|
162 |
-
print("ネットワーク遅延の測定失敗")
|
163 |
-
|
164 |
-
if __name__ == "__main__":
|
165 |
-
print("DittoTalkingHead パフォーマンステスト")
|
166 |
-
print("=" * 50)
|
167 |
-
|
168 |
-
# 1. 詳細な時間計測
|
169 |
-
test_performance()
|
170 |
-
|
171 |
-
# 2. 複数回実行テスト
|
172 |
-
# test_multiple_runs(3)
|
173 |
-
|
174 |
-
# 3. ボトルネック分析
|
175 |
-
analyze_bottlenecks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_performance_optimized.py
DELETED
@@ -1,375 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Performance test script for Phase 3 optimizations
|
3 |
-
Tests various optimization strategies and measures performance improvements
|
4 |
-
"""
|
5 |
-
|
6 |
-
import time
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
import numpy as np
|
10 |
-
from pathlib import Path
|
11 |
-
import torch
|
12 |
-
from typing import Dict, List, Tuple
|
13 |
-
import json
|
14 |
-
from datetime import datetime
|
15 |
-
|
16 |
-
# Add project root to path
|
17 |
-
sys.path.append(str(Path(__file__).parent))
|
18 |
-
|
19 |
-
from model_manager import ModelManager
|
20 |
-
from core.optimization import (
|
21 |
-
FixedResolutionProcessor,
|
22 |
-
GPUOptimizer,
|
23 |
-
AvatarCache,
|
24 |
-
AvatarTokenManager,
|
25 |
-
ColdStartOptimizer
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
class PerformanceTester:
|
30 |
-
"""Performance testing framework for DittoTalkingHead optimizations"""
|
31 |
-
|
32 |
-
def __init__(self):
|
33 |
-
self.results = []
|
34 |
-
self.resolution_optimizer = FixedResolutionProcessor()
|
35 |
-
self.gpu_optimizer = GPUOptimizer()
|
36 |
-
self.cold_start_optimizer = ColdStartOptimizer()
|
37 |
-
self.avatar_cache = AvatarCache()
|
38 |
-
|
39 |
-
# Test configurations
|
40 |
-
self.test_configs = {
|
41 |
-
"audio_durations": [4, 8, 16, 32], # seconds
|
42 |
-
"resolutions": [256, 320, 512], # will test 320 fixed vs others
|
43 |
-
"optimization_levels": ["none", "gpu_only", "resolution_only", "full"]
|
44 |
-
}
|
45 |
-
|
46 |
-
def setup_test_environment(self):
|
47 |
-
"""Set up test environment"""
|
48 |
-
print("=== Setting up test environment ===")
|
49 |
-
|
50 |
-
# Initialize models
|
51 |
-
USE_PYTORCH = True
|
52 |
-
model_manager = ModelManager(cache_dir="/tmp/ditto_models", use_pytorch=USE_PYTORCH)
|
53 |
-
|
54 |
-
if not model_manager.setup_models():
|
55 |
-
raise RuntimeError("Failed to setup models")
|
56 |
-
|
57 |
-
# Initialize SDK
|
58 |
-
if USE_PYTORCH:
|
59 |
-
data_root = "./checkpoints/ditto_pytorch"
|
60 |
-
cfg_pkl = "./checkpoints/ditto_cfg/v0.4_hubert_cfg_pytorch.pkl"
|
61 |
-
else:
|
62 |
-
data_root = "./checkpoints/ditto_trt_Ampere_Plus"
|
63 |
-
cfg_pkl = "./checkpoints/ditto_cfg/v0.4_hubert_cfg_trt.pkl"
|
64 |
-
|
65 |
-
from stream_pipeline_offline import StreamSDK
|
66 |
-
self.sdk = StreamSDK(cfg_pkl, data_root)
|
67 |
-
|
68 |
-
print("✅ Test environment ready")
|
69 |
-
|
70 |
-
def generate_test_data(self, duration: int) -> Tuple[str, str]:
|
71 |
-
"""
|
72 |
-
Generate test audio and image files
|
73 |
-
|
74 |
-
Args:
|
75 |
-
duration: Audio duration in seconds
|
76 |
-
|
77 |
-
Returns:
|
78 |
-
Tuple of (audio_path, image_path)
|
79 |
-
"""
|
80 |
-
import tempfile
|
81 |
-
from scipy.io import wavfile
|
82 |
-
from PIL import Image
|
83 |
-
|
84 |
-
# Generate test audio (sine wave)
|
85 |
-
sample_rate = 16000
|
86 |
-
t = np.linspace(0, duration, duration * sample_rate)
|
87 |
-
audio_data = np.sin(2 * np.pi * 440 * t).astype(np.float32) * 0.5
|
88 |
-
|
89 |
-
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp:
|
90 |
-
wavfile.write(tmp.name, sample_rate, audio_data)
|
91 |
-
audio_path = tmp.name
|
92 |
-
|
93 |
-
# Generate test image
|
94 |
-
img = Image.new('RGB', (512, 512), color='white')
|
95 |
-
# Add some features
|
96 |
-
from PIL import ImageDraw
|
97 |
-
draw = ImageDraw.Draw(img)
|
98 |
-
draw.ellipse([156, 156, 356, 356], fill='lightblue') # Face
|
99 |
-
draw.ellipse([200, 200, 220, 220], fill='black') # Left eye
|
100 |
-
draw.ellipse([292, 200, 312, 220], fill='black') # Right eye
|
101 |
-
draw.arc([220, 250, 292, 300], 0, 180, fill='red', width=3) # Mouth
|
102 |
-
|
103 |
-
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
104 |
-
img.save(tmp.name)
|
105 |
-
image_path = tmp.name
|
106 |
-
|
107 |
-
return audio_path, image_path
|
108 |
-
|
109 |
-
def test_baseline(self, audio_duration: int) -> Dict[str, float]:
|
110 |
-
"""
|
111 |
-
Test baseline performance without optimizations
|
112 |
-
|
113 |
-
Args:
|
114 |
-
audio_duration: Test audio duration in seconds
|
115 |
-
|
116 |
-
Returns:
|
117 |
-
Performance metrics
|
118 |
-
"""
|
119 |
-
print(f"\n--- Testing baseline (no optimizations, {audio_duration}s audio) ---")
|
120 |
-
|
121 |
-
audio_path, image_path = self.generate_test_data(audio_duration)
|
122 |
-
|
123 |
-
try:
|
124 |
-
# Disable optimizations
|
125 |
-
torch.backends.cudnn.benchmark = False
|
126 |
-
|
127 |
-
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp:
|
128 |
-
output_path = tmp.name
|
129 |
-
|
130 |
-
# Run without optimizations
|
131 |
-
from inference import run, seed_everything
|
132 |
-
seed_everything(1024)
|
133 |
-
|
134 |
-
start_time = time.time()
|
135 |
-
run(self.sdk, audio_path, image_path, output_path)
|
136 |
-
process_time = time.time() - start_time
|
137 |
-
|
138 |
-
# Clean up
|
139 |
-
for path in [audio_path, image_path, output_path]:
|
140 |
-
if os.path.exists(path):
|
141 |
-
os.unlink(path)
|
142 |
-
|
143 |
-
return {
|
144 |
-
"audio_duration": audio_duration,
|
145 |
-
"process_time": process_time,
|
146 |
-
"realtime_factor": process_time / audio_duration,
|
147 |
-
"optimization": "none"
|
148 |
-
}
|
149 |
-
|
150 |
-
except Exception as e:
|
151 |
-
print(f"Error in baseline test: {e}")
|
152 |
-
return None
|
153 |
-
|
154 |
-
def test_gpu_optimization(self, audio_duration: int) -> Dict[str, float]:
|
155 |
-
"""Test with GPU optimizations only"""
|
156 |
-
print(f"\n--- Testing GPU optimization ({audio_duration}s audio) ---")
|
157 |
-
|
158 |
-
audio_path, image_path = self.generate_test_data(audio_duration)
|
159 |
-
|
160 |
-
try:
|
161 |
-
# Apply GPU optimizations
|
162 |
-
self.gpu_optimizer._setup_cuda_optimizations()
|
163 |
-
|
164 |
-
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp:
|
165 |
-
output_path = tmp.name
|
166 |
-
|
167 |
-
from inference import run, seed_everything
|
168 |
-
seed_everything(1024)
|
169 |
-
|
170 |
-
start_time = time.time()
|
171 |
-
run(self.sdk, audio_path, image_path, output_path)
|
172 |
-
process_time = time.time() - start_time
|
173 |
-
|
174 |
-
# Clean up
|
175 |
-
for path in [audio_path, image_path, output_path]:
|
176 |
-
if os.path.exists(path):
|
177 |
-
os.unlink(path)
|
178 |
-
|
179 |
-
return {
|
180 |
-
"audio_duration": audio_duration,
|
181 |
-
"process_time": process_time,
|
182 |
-
"realtime_factor": process_time / audio_duration,
|
183 |
-
"optimization": "gpu_only"
|
184 |
-
}
|
185 |
-
|
186 |
-
except Exception as e:
|
187 |
-
print(f"Error in GPU optimization test: {e}")
|
188 |
-
return None
|
189 |
-
|
190 |
-
def test_resolution_optimization(self, audio_duration: int) -> Dict[str, float]:
|
191 |
-
"""Test with resolution optimization (320x320)"""
|
192 |
-
print(f"\n--- Testing resolution optimization ({audio_duration}s audio) ---")
|
193 |
-
|
194 |
-
audio_path, image_path = self.generate_test_data(audio_duration)
|
195 |
-
|
196 |
-
try:
|
197 |
-
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp:
|
198 |
-
output_path = tmp.name
|
199 |
-
|
200 |
-
# Apply resolution optimization
|
201 |
-
setup_kwargs = {
|
202 |
-
"max_size": self.resolution_optimizer.get_max_dim(), # 320
|
203 |
-
"sampling_timesteps": self.resolution_optimizer.get_diffusion_steps() # 25
|
204 |
-
}
|
205 |
-
|
206 |
-
from inference import run, seed_everything
|
207 |
-
seed_everything(1024)
|
208 |
-
|
209 |
-
start_time = time.time()
|
210 |
-
run(self.sdk, audio_path, image_path, output_path,
|
211 |
-
more_kwargs={"setup_kwargs": setup_kwargs})
|
212 |
-
process_time = time.time() - start_time
|
213 |
-
|
214 |
-
# Clean up
|
215 |
-
for path in [audio_path, image_path, output_path]:
|
216 |
-
if os.path.exists(path):
|
217 |
-
os.unlink(path)
|
218 |
-
|
219 |
-
return {
|
220 |
-
"audio_duration": audio_duration,
|
221 |
-
"process_time": process_time,
|
222 |
-
"realtime_factor": process_time / audio_duration,
|
223 |
-
"optimization": "resolution_only",
|
224 |
-
"resolution": f"{self.resolution_optimizer.get_max_dim()}x{self.resolution_optimizer.get_max_dim()}"
|
225 |
-
}
|
226 |
-
|
227 |
-
except Exception as e:
|
228 |
-
print(f"Error in resolution optimization test: {e}")
|
229 |
-
return None
|
230 |
-
|
231 |
-
def test_full_optimization(self, audio_duration: int) -> Dict[str, float]:
|
232 |
-
"""Test with all optimizations enabled"""
|
233 |
-
print(f"\n--- Testing full optimization ({audio_duration}s audio) ---")
|
234 |
-
|
235 |
-
audio_path, image_path = self.generate_test_data(audio_duration)
|
236 |
-
|
237 |
-
try:
|
238 |
-
# Apply all optimizations
|
239 |
-
self.gpu_optimizer._setup_cuda_optimizations()
|
240 |
-
|
241 |
-
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp:
|
242 |
-
output_path = tmp.name
|
243 |
-
|
244 |
-
setup_kwargs = {
|
245 |
-
"max_size": self.resolution_optimizer.get_max_dim(),
|
246 |
-
"sampling_timesteps": self.resolution_optimizer.get_diffusion_steps()
|
247 |
-
}
|
248 |
-
|
249 |
-
from inference import run, seed_everything
|
250 |
-
seed_everything(1024)
|
251 |
-
|
252 |
-
start_time = time.time()
|
253 |
-
run(self.sdk, audio_path, image_path, output_path,
|
254 |
-
more_kwargs={"setup_kwargs": setup_kwargs})
|
255 |
-
process_time = time.time() - start_time
|
256 |
-
|
257 |
-
# Clean up
|
258 |
-
for path in [audio_path, image_path, output_path]:
|
259 |
-
if os.path.exists(path):
|
260 |
-
os.unlink(path)
|
261 |
-
|
262 |
-
return {
|
263 |
-
"audio_duration": audio_duration,
|
264 |
-
"process_time": process_time,
|
265 |
-
"realtime_factor": process_time / audio_duration,
|
266 |
-
"optimization": "full",
|
267 |
-
"resolution": f"{self.resolution_optimizer.get_max_dim()}x{self.resolution_optimizer.get_max_dim()}",
|
268 |
-
"gpu_optimized": True
|
269 |
-
}
|
270 |
-
|
271 |
-
except Exception as e:
|
272 |
-
print(f"Error in full optimization test: {e}")
|
273 |
-
return None
|
274 |
-
|
275 |
-
def run_comprehensive_test(self):
|
276 |
-
"""Run comprehensive performance tests"""
|
277 |
-
print("\n" + "="*60)
|
278 |
-
print("Starting comprehensive performance test")
|
279 |
-
print("="*60)
|
280 |
-
|
281 |
-
self.setup_test_environment()
|
282 |
-
|
283 |
-
# Test different audio durations and optimization levels
|
284 |
-
for duration in self.test_configs["audio_durations"]:
|
285 |
-
print(f"\n{'='*60}")
|
286 |
-
print(f"Testing with {duration}s audio")
|
287 |
-
print(f"{'='*60}")
|
288 |
-
|
289 |
-
# Run tests with different optimization levels
|
290 |
-
tests = [
|
291 |
-
("Baseline", self.test_baseline),
|
292 |
-
("GPU Only", self.test_gpu_optimization),
|
293 |
-
("Resolution Only", self.test_resolution_optimization),
|
294 |
-
("Full Optimization", self.test_full_optimization)
|
295 |
-
]
|
296 |
-
|
297 |
-
duration_results = []
|
298 |
-
|
299 |
-
for test_name, test_func in tests:
|
300 |
-
result = test_func(duration)
|
301 |
-
if result:
|
302 |
-
duration_results.append(result)
|
303 |
-
print(f"{test_name}: {result['process_time']:.2f}s (RT factor: {result['realtime_factor']:.2f}x)")
|
304 |
-
|
305 |
-
# Clear GPU cache between tests
|
306 |
-
self.gpu_optimizer.clear_cache()
|
307 |
-
time.sleep(1) # Brief pause
|
308 |
-
|
309 |
-
self.results.extend(duration_results)
|
310 |
-
|
311 |
-
# Generate report
|
312 |
-
self.generate_report()
|
313 |
-
|
314 |
-
def generate_report(self):
|
315 |
-
"""Generate performance test report"""
|
316 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
317 |
-
report_file = f"performance_report_{timestamp}.json"
|
318 |
-
|
319 |
-
# Calculate improvements
|
320 |
-
summary = {
|
321 |
-
"test_date": timestamp,
|
322 |
-
"gpu_info": self.gpu_optimizer.get_memory_stats(),
|
323 |
-
"optimization_config": self.resolution_optimizer.get_performance_config(),
|
324 |
-
"results": self.results
|
325 |
-
}
|
326 |
-
|
327 |
-
# Calculate average improvements by optimization type
|
328 |
-
avg_improvements = {}
|
329 |
-
for opt_type in ["gpu_only", "resolution_only", "full"]:
|
330 |
-
opt_results = [r for r in self.results if r.get("optimization") == opt_type]
|
331 |
-
baseline_results = [r for r in self.results if r.get("optimization") == "none"
|
332 |
-
and r["audio_duration"] == opt_results[0]["audio_duration"]]
|
333 |
-
|
334 |
-
if opt_results and baseline_results:
|
335 |
-
avg_improvement = 0
|
336 |
-
for opt_r in opt_results:
|
337 |
-
baseline_r = next((b for b in baseline_results
|
338 |
-
if b["audio_duration"] == opt_r["audio_duration"]), None)
|
339 |
-
if baseline_r:
|
340 |
-
improvement = (baseline_r["process_time"] - opt_r["process_time"]) / baseline_r["process_time"] * 100
|
341 |
-
avg_improvement += improvement
|
342 |
-
|
343 |
-
avg_improvements[opt_type] = avg_improvement / len(opt_results)
|
344 |
-
|
345 |
-
summary["average_improvements"] = avg_improvements
|
346 |
-
|
347 |
-
# Save report
|
348 |
-
with open(report_file, 'w') as f:
|
349 |
-
json.dump(summary, f, indent=2)
|
350 |
-
|
351 |
-
# Print summary
|
352 |
-
print("\n" + "="*60)
|
353 |
-
print("PERFORMANCE TEST SUMMARY")
|
354 |
-
print("="*60)
|
355 |
-
|
356 |
-
print("\nAverage Performance Improvements:")
|
357 |
-
for opt_type, improvement in avg_improvements.items():
|
358 |
-
print(f"- {opt_type}: {improvement:.1f}% faster")
|
359 |
-
|
360 |
-
print(f"\nDetailed results saved to: {report_file}")
|
361 |
-
|
362 |
-
# Check if we meet the target (16s audio in <10s)
|
363 |
-
target_results = [r for r in self.results
|
364 |
-
if r.get("optimization") == "full" and r["audio_duration"] == 16]
|
365 |
-
if target_results:
|
366 |
-
meets_target = target_results[0]["process_time"] <= 10.0
|
367 |
-
print(f"\n✅ Target Achievement (16s audio < 10s): {'YES' if meets_target else 'NO'}")
|
368 |
-
print(f" Actual time: {target_results[0]['process_time']:.2f}s")
|
369 |
-
|
370 |
-
|
371 |
-
if __name__ == "__main__":
|
372 |
-
import tempfile
|
373 |
-
|
374 |
-
tester = PerformanceTester()
|
375 |
-
tester.run_comprehensive_test()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|