import numpy as np import torch from ..utils.load_model import load_model class Decoder: def __init__(self, model_path, device="cuda"): kwargs = { "module_name": "SPADEDecoder", } self.model, self.model_type = load_model(model_path, device=device, **kwargs) self.device = device def __call__(self, feature): if self.model_type == "onnx": pred = self.model.run(None, {"feature": feature})[0] elif self.model_type == "tensorrt": self.model.setup({"feature": feature}) self.model.infer() pred = self.model.buffer["output"][0].copy() elif self.model_type == 'pytorch': with torch.no_grad(), torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=True): pred = self.model(torch.from_numpy(feature).to(self.device)).float().cpu().numpy() else: raise ValueError(f"Unsupported model type: {self.model_type}") pred = np.transpose(pred[0], [1, 2, 0]).clip(0, 1) * 255 # [h, w, c] return pred