import numpy as np import torch from ..utils.load_model import load_model class WarpNetwork: def __init__(self, model_path, device="cuda"): kwargs = { "module_name": "WarpingNetwork", } self.model, self.model_type = load_model(model_path, device=device, **kwargs) self.device = device def __call__(self, feature_3d, kp_source, kp_driving): """ feature_3d: np.ndarray, shape (1, 32, 16, 64, 64) kp_source | kp_driving: np.ndarray, shape (1, 21, 3) """ if self.model_type == "onnx": pred = self.model.run(None, {"feature_3d": feature_3d, "kp_source": kp_source, "kp_driving": kp_driving})[0] elif self.model_type == "tensorrt": self.model.setup({"feature_3d": feature_3d, "kp_source": kp_source, "kp_driving": kp_driving}) self.model.infer() pred = self.model.buffer["out"][0].copy() elif self.model_type == 'pytorch': with torch.no_grad(), torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=True): pred = self.model( torch.from_numpy(feature_3d).to(self.device), torch.from_numpy(kp_source).to(self.device), torch.from_numpy(kp_driving).to(self.device) ).float().cpu().numpy() else: raise ValueError(f"Unsupported model type: {self.model_type}") return pred