Spaces:
Running
Running
import os | |
import gradio as gr | |
from faster_whisper import WhisperModel | |
import google.generativeai as genai | |
from gtts import gTTS, lang | |
import tempfile | |
# Configure Gemini API (replace with your API key or use environment variable) | |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "YOUR_GEMINI_API_KEY_HERE") | |
genai.configure(api_key=GEMINI_API_KEY) | |
# Initialize the faster-whisper model | |
model_size = "Systran/faster-whisper-large-v3" | |
whisper_model = WhisperModel(model_size, device="auto", compute_type="float16") | |
# Function to transcribe audio using faster-whisper | |
def transcribe_audio(audio_file): | |
try: | |
segments, info = whisper_model.transcribe(audio_file, beam_size=5) | |
transcription = " ".join([segment.text for segment in segments]) | |
detected_language = info.language | |
return transcription, detected_language, None | |
except Exception as e: | |
return None, None, f"Transcription error: {str(e)}" | |
# Function to translate text using Gemini API with a magic prompt | |
def translate_text(text, target_language): | |
try: | |
model = genai.GenerativeModel("gemini-1.5-flash") | |
# Magic prompt to ensure only translated text is returned | |
prompt = f"Translate the following text to {target_language} and return only the translated text with no additional explanation or commentary:\n\n{text}" | |
response = model.generate_content(prompt) | |
translated_text = response.text.strip() | |
return translated_text, None | |
except Exception as e: | |
return None, f"Translation error: {str(e)}" | |
# Function to convert text to speech using gTTS with full language support | |
def text_to_speech(text, language): | |
try: | |
# Get all supported languages from gTTS | |
lang_map = lang.tts_langs() | |
# Use the language code directly if supported, otherwise default to 'en' | |
tts_lang = language.lower() if language.lower() in lang_map else "en" | |
tts = gTTS(text=text, lang=tts_lang, slow=False) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp: | |
tts.save(fp.name) | |
return fp.name, None | |
except Exception as e: | |
return None, f"TTS error: {str(e)}" | |
# Main function to process audio input and return outputs | |
def process_audio(audio_file, target_language): | |
# Step 1: Transcribe audio | |
transcription, detected_language, error = transcribe_audio(audio_file) | |
if error: | |
return error, None, None, None | |
# Step 2: Translate transcription | |
translated_text, error = translate_text(transcription, target_language) | |
if error: | |
return error, transcription, None, None | |
# Step 3: Convert translated text to speech | |
# Map target language name to gTTS language code | |
lang_map = lang.tts_langs() | |
# Convert target_language to lowercase keys as in lang_map | |
lang_key = next((k for k, v in lang_map.items() if v.lower() == target_language.lower()), "en") | |
audio_output, error = text_to_speech(translated_text, lang_key) | |
if error: | |
return error, transcription, translated_text, None | |
return None, transcription, translated_text, audio_output | |
# Gradio interface | |
with gr.Blocks(title="AI Audio Translator") as demo: | |
gr.Markdown("# AI Audio Translator") | |
gr.Markdown("Upload an audio file, select a target language, and get the transcription, translation, and translated audio!") | |
# Get all supported languages from gTTS | |
supported_langs = {v: k for k, v in lang.tts_langs().items()} # {name: code} | |
language_choices = list(supported_langs.keys()) # List of language names | |
with gr.Row(): | |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio") | |
target_lang = gr.Dropdown( | |
choices=sorted(language_choices), | |
value="Spanish", | |
label="Target Language" | |
) | |
submit_btn = gr.Button("Translate") | |
with gr.Row(): | |
error_output = gr.Textbox(label="Error", visible=True) | |
transcription_output = gr.Textbox(label="Transcription") | |
translation_output = gr.Textbox(label="Translated Text") | |
audio_output = gr.Audio(label="Translated Audio") | |
submit_btn.click( | |
fn=process_audio, | |
inputs=[audio_input, target_lang], | |
outputs=[error_output, transcription_output, translation_output, audio_output] | |
) | |
# Launch the app | |
demo.launch() |