Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,19 @@ import google.generativeai as genai
|
|
5 |
from gtts import gTTS, lang
|
6 |
import tempfile
|
7 |
|
8 |
-
# Configure Gemini API (
|
9 |
-
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY"
|
|
|
|
|
10 |
genai.configure(api_key=GEMINI_API_KEY)
|
11 |
|
12 |
-
# Initialize the faster-whisper model
|
13 |
model_size = "Systran/faster-whisper-large-v3"
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Function to transcribe audio using faster-whisper
|
17 |
def transcribe_audio(audio_file):
|
@@ -27,7 +33,6 @@ def transcribe_audio(audio_file):
|
|
27 |
def translate_text(text, target_language):
|
28 |
try:
|
29 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
30 |
-
# Magic prompt to ensure only translated text is returned
|
31 |
prompt = f"Translate the following text to {target_language} and return only the translated text with no additional explanation or commentary:\n\n{text}"
|
32 |
response = model.generate_content(prompt)
|
33 |
translated_text = response.text.strip()
|
@@ -38,9 +43,7 @@ def translate_text(text, target_language):
|
|
38 |
# Function to convert text to speech using gTTS with full language support
|
39 |
def text_to_speech(text, language):
|
40 |
try:
|
41 |
-
# Get all supported languages from gTTS
|
42 |
lang_map = lang.tts_langs()
|
43 |
-
# Use the language code directly if supported, otherwise default to 'en'
|
44 |
tts_lang = language.lower() if language.lower() in lang_map else "en"
|
45 |
tts = gTTS(text=text, lang=tts_lang, slow=False)
|
46 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
@@ -51,20 +54,18 @@ def text_to_speech(text, language):
|
|
51 |
|
52 |
# Main function to process audio input and return outputs
|
53 |
def process_audio(audio_file, target_language):
|
54 |
-
|
|
|
|
|
55 |
transcription, detected_language, error = transcribe_audio(audio_file)
|
56 |
if error:
|
57 |
return error, None, None, None
|
58 |
|
59 |
-
# Step 2: Translate transcription
|
60 |
translated_text, error = translate_text(transcription, target_language)
|
61 |
if error:
|
62 |
return error, transcription, None, None
|
63 |
|
64 |
-
# Step 3: Convert translated text to speech
|
65 |
-
# Map target language name to gTTS language code
|
66 |
lang_map = lang.tts_langs()
|
67 |
-
# Convert target_language to lowercase keys as in lang_map
|
68 |
lang_key = next((k for k, v in lang_map.items() if v.lower() == target_language.lower()), "en")
|
69 |
audio_output, error = text_to_speech(translated_text, lang_key)
|
70 |
if error:
|
@@ -75,11 +76,10 @@ def process_audio(audio_file, target_language):
|
|
75 |
# Gradio interface
|
76 |
with gr.Blocks(title="AI Audio Translator") as demo:
|
77 |
gr.Markdown("# AI Audio Translator")
|
78 |
-
gr.Markdown("Upload an audio file, select a target language, and get the transcription, translation, and translated audio!")
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
language_choices = list(supported_langs.keys()) # List of language names
|
83 |
|
84 |
with gr.Row():
|
85 |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio")
|
|
|
5 |
from gtts import gTTS, lang
|
6 |
import tempfile
|
7 |
|
8 |
+
# Configure Gemini API (use environment variable for Hugging Face Spaces)
|
9 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
10 |
+
if not GEMINI_API_KEY:
|
11 |
+
raise ValueError("GEMINI_API_KEY environment variable not set. Please set it in the Hugging Face Spaces Secrets.")
|
12 |
genai.configure(api_key=GEMINI_API_KEY)
|
13 |
|
14 |
+
# Initialize the faster-whisper model with fallback compute type
|
15 |
model_size = "Systran/faster-whisper-large-v3"
|
16 |
+
try:
|
17 |
+
whisper_model = WhisperModel(model_size, device="auto", compute_type="float16")
|
18 |
+
except ValueError:
|
19 |
+
print("Float16 not supported, falling back to int8 on CPU")
|
20 |
+
whisper_model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
21 |
|
22 |
# Function to transcribe audio using faster-whisper
|
23 |
def transcribe_audio(audio_file):
|
|
|
33 |
def translate_text(text, target_language):
|
34 |
try:
|
35 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
|
|
36 |
prompt = f"Translate the following text to {target_language} and return only the translated text with no additional explanation or commentary:\n\n{text}"
|
37 |
response = model.generate_content(prompt)
|
38 |
translated_text = response.text.strip()
|
|
|
43 |
# Function to convert text to speech using gTTS with full language support
|
44 |
def text_to_speech(text, language):
|
45 |
try:
|
|
|
46 |
lang_map = lang.tts_langs()
|
|
|
47 |
tts_lang = language.lower() if language.lower() in lang_map else "en"
|
48 |
tts = gTTS(text=text, lang=tts_lang, slow=False)
|
49 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
|
|
54 |
|
55 |
# Main function to process audio input and return outputs
|
56 |
def process_audio(audio_file, target_language):
|
57 |
+
if audio_file is None:
|
58 |
+
return "Please upload an audio file or record audio.", None, None, None
|
59 |
+
|
60 |
transcription, detected_language, error = transcribe_audio(audio_file)
|
61 |
if error:
|
62 |
return error, None, None, None
|
63 |
|
|
|
64 |
translated_text, error = translate_text(transcription, target_language)
|
65 |
if error:
|
66 |
return error, transcription, None, None
|
67 |
|
|
|
|
|
68 |
lang_map = lang.tts_langs()
|
|
|
69 |
lang_key = next((k for k, v in lang_map.items() if v.lower() == target_language.lower()), "en")
|
70 |
audio_output, error = text_to_speech(translated_text, lang_key)
|
71 |
if error:
|
|
|
76 |
# Gradio interface
|
77 |
with gr.Blocks(title="AI Audio Translator") as demo:
|
78 |
gr.Markdown("# AI Audio Translator")
|
79 |
+
gr.Markdown("Upload an audio file or record via microphone, select a target language, and get the transcription, translation, and translated audio!")
|
80 |
|
81 |
+
supported_langs = {v: k for k, v in lang.tts_langs().items()}
|
82 |
+
language_choices = list(supported_langs.keys())
|
|
|
83 |
|
84 |
with gr.Row():
|
85 |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio")
|