Spaces:
Running
Running
File size: 5,871 Bytes
91f8d48 818e336 e6d59c3 91f8d48 e6d59c3 91f8d48 e6d59c3 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 e6d59c3 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 e6d59c3 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 91f8d48 818e336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import re
import google.generativeai as genai
from moviepy.video.io.VideoFileClip import VideoFileClip
import tempfile
import logging
import gradio as gr
from datetime import timedelta
# Suppress moviepy logs
logging.getLogger("moviepy").setLevel(logging.ERROR)
# Configure Gemini API
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
# Create the Gemini model
model = genai.GenerativeModel("gemini-2.0-flash-exp")
# Enhanced language support
SUPPORTED_LANGUAGES = [
"Auto Detect", "English", "Spanish", "French", "German", "Italian",
"Portuguese", "Russian", "Japanese", "Korean", "Arabic", "Hindi",
"Chinese", "Dutch", "Turkish", "Polish", "Vietnamese", "Thai"
]
# Magic Prompts
TRANSCRIPTION_PROMPT = """You are a professional subtitling expert. Analyze this audio and generate precise subtitles with accurate timestamps following these rules:
1. Identify natural speech segments (3-7 words)
2. Include exact start/end times in [HH:MM:SS.ms] format
3. Add speaker identification when multiple voices
4. Preserve emotional tone and punctuation
5. Format exactly like:
[00:00:05.250 -> 00:00:08.100]
Hello world! This is an example.
[00:00:08.500 -> 00:00:10.200]
Second subtitle line.
Return ONLY the subtitles with timestamps, no explanations."""
TRANSLATION_PROMPT = """You are a certified translator. Translate these subtitles to {target_language} following these rules:
1. Keep timestamps EXACTLY as original
2. Match subtitle length to original timing
3. Preserve names/technical terms
4. Use natural colloquial speech
5. Maintain line breaks and formatting
ORIGINAL SUBTITLES:
{subtitles}
TRANSLATED {target_language} SUBTITLES:"""
def extract_audio(video_path):
"""Extract high-quality audio from video"""
video = VideoFileClip(video_path)
audio_path = os.path.join(tempfile.gettempdir(), "high_quality_audio.wav")
video.audio.write_audiofile(audio_path, fps=44100, nbytes=2, codec='pcm_s16le')
return audio_path
def parse_timestamp(timestamp_str):
"""Convert timestamp string to seconds"""
h, m, s = map(float, timestamp_str.split(':'))
return h * 3600 + m * 60 + s
def gemini_transcribe(audio_path):
"""Get timestamped transcription from Gemini"""
with open(audio_path, "rb") as f:
audio_data = f.read()
response = model.generate_content(
contents=[TRANSCRIPTION_PROMPT,
{'mime_type': 'audio/wav', 'data': audio_data}]
)
return response.text
def create_srt(subtitles_text):
"""Convert Gemini's raw output to SRT format"""
entries = re.split(r'\n{2,}', subtitles_text.strip())
srt_output = []
for idx, entry in enumerate(entries, 1):
time_match = re.match(r'\[(.*?) -> (.*?)\]', entry)
if not time_match:
continue
start_time = parse_timestamp(time_match.group(1))
end_time = parse_timestamp(time_match.group(2))
text = entry.split(']', 1)[1].strip()
srt_output.append(
f"{idx}\n"
f"{timedelta(seconds=start_time)} --> {timedelta(seconds=end_time)}\n"
f"{text}\n"
)
return "".join(srt_output)
def translate_subtitles(subtitles, target_lang):
"""Translate subtitles while preserving timing"""
prompt = TRANSLATION_PROMPT.format(
target_language=target_lang,
subtitles=subtitles
)
response = model.generate_content(prompt)
return response.text
def process_video(video_path, source_lang, target_lang):
"""Full processing pipeline"""
# Audio extraction
audio_path = extract_audio(video_path)
# Transcription
raw_transcription = gemini_transcribe(audio_path)
srt_original = create_srt(raw_transcription)
# Save original
original_srt = os.path.join(tempfile.gettempdir(), "original.srt")
with open(original_srt, "w") as f:
f.write(srt_original)
# Translation
translated_srt = None
if target_lang != "None":
translated_text = translate_subtitles(srt_original, target_lang)
translated_srt = os.path.join(tempfile.gettempdir(), "translated.srt")
with open(translated_srt, "w") as f:
f.write(translated_text)
# Cleanup
os.remove(audio_path)
return original_srt, translated_srt
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default(spacing_size="sm")) as app:
gr.Markdown("# 🎬 Professional Subtitle Studio")
gr.Markdown("Generate broadcast-quality subtitles with perfect timing")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video", sources=["upload"])
lang_row = gr.Row()
source_lang = gr.Dropdown(
label="Source Language",
choices=SUPPORTED_LANGUAGES,
value="Auto Detect"
)
target_lang = gr.Dropdown(
label="Translate To",
choices=["None"] + SUPPORTED_LANGUAGES[1:],
value="None"
)
process_btn = gr.Button("Generate Subtitles", variant="primary")
with gr.Column():
original_sub = gr.File(label="Original Subtitles")
translated_sub = gr.File(label="Translated Subtitles")
preview_area = gr.HTML("""
<div style='border: 2px dashed #666; padding: 20px; border-radius: 8px;'>
<h3 style='margin-top: 0;'>Subtitle Preview</h3>
<div id='preview-content' style='height: 300px; overflow-y: auto;'></div>
</div>
""")
process_btn.click(
process_video,
inputs=[video_input, source_lang, target_lang],
outputs=[original_sub, translated_sub]
)
if __name__ == "__main__":
app.launch(server_port=7860, share=True) |