File size: 9,115 Bytes
d24a2f3
0a39518
8a409a5
21e6f34
d24a2f3
 
0a39518
c901468
 
 
0a39518
 
08c3547
0a39518
 
d24a2f3
0a39518
08c3547
0a39518
8a409a5
0a39518
a2554b6
 
0a39518
 
 
 
 
 
 
 
a2554b6
893e301
0a39518
 
 
 
 
 
 
 
 
 
 
893e301
0a39518
 
893e301
21e6f34
0a39518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab46005
0a39518
 
 
 
 
9807843
0a39518
 
 
 
 
 
 
 
d24a2f3
 
0a39518
8a409a5
0a39518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2554b6
0a39518
 
 
 
 
 
 
 
 
 
 
a2554b6
0a39518
 
 
 
 
a2554b6
0a39518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a409a5
0a39518
 
 
 
 
 
 
 
 
 
d6208ae
0a39518
 
 
 
 
 
893e301
0a39518
 
 
 
 
893e301
0a39518
 
 
 
893e301
0a39518
 
 
 
a30e87b
0a39518
 
893e301
0a39518
 
d6208ae
0a39518
 
 
 
 
893e301
d6208ae
0a39518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import time
import tempfile
import uuid
import google.generativeai as genai
import requests
from flask import Flask, request, render_template, send_from_directory, url_for, flash, jsonify
from moviepy.video.io.VideoFileClip import VideoFileClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.compositing.CompositeVideoClip import CompositeVideoClip
from moviepy.video.fx.all import resize, speedx
from werkzeug.utils import secure_filename
from dotenv import load_dotenv
from PIL import Image, ImageDraw, ImageFont
import numpy as np

# --- 1. INITIALIZE FLASK APP AND LOAD SECRETS ---
load_dotenv()
app = Flask(__name__)

# Load secrets from environment variables
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
TTS_API_URL = os.getenv("TTS_API_URL")

# Validate required configurations
if not GEMINI_API_KEY:
    raise ValueError("SECURITY ERROR: GEMINI_API_KEY not found in .env file!")
if not TTS_API_URL:
    raise ValueError("CONFIGURATION ERROR: TTS_API_URL not found in .env file!")

# Configure Gemini AI
genai.configure(api_key=GEMINI_API_KEY)

# Configure directories
UPLOAD_FOLDER = 'uploads'
DOWNLOAD_FOLDER = 'downloads'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(DOWNLOAD_FOLDER, exist_ok=True)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['DOWNLOAD_FOLDER'] = DOWNLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024  # 100 MB upload limit
app.secret_key = os.urandom(24)  # Secure key for flash messages

# --- 2. APPLICATION CONFIGURATION ---
VOICE_CHOICES = {
    "Male (Charon)": "Charon",
    "Female (Zephyr)": "Zephyr"
}

EDITING_PRESETS = {
    "fast_cuts": {
        "speed": 1.2,
        "transition_duration": 0.3,
        "max_clip_duration": 5
    },
    "cinematic": {
        "speed": 0.95,
        "transition_duration": 1.0,
        "black_bars": True
    },
    "social_media": {
        "speed": 1.0,
        "aspect_ratio": (9, 16),
        "add_captions": True
    }
}

GEMINI_PROMPT = """
You are an expert AI scriptwriter. Your task is to watch the provided video and:
1. Transcribe ALL spoken dialogue into modern, colloquial Tamil
2. Identify key moments for editing (action, emotion, important points)
3. Suggest timestamps for cuts/transitions

**OUTPUT FORMAT:**
{
    "script": "Combined Tamil dialogue with performance cues",
    "editing_notes": [
        {"timestamp": 12.5, "type": "cut", "reason": "action moment"},
        {"timestamp": 24.3, "type": "slow_mo", "reason": "emotional highlight"}
    ]
}
"""

# --- 3. CORE APPLICATION FUNCTIONS ---

def analyze_video(video_path):
    """Analyze video content and generate script with editing suggestions."""
    print("Analyzing video with Gemini...")
    video_file = genai.upload_file(video_path, mime_type="video/mp4")
    
    # Wait for file processing
    while video_file.state.name == "PROCESSING":
        time.sleep(5)
        video_file = genai.get_file(video_file.name)
    
    if video_file.state.name != "ACTIVE":
        raise Exception(f"Gemini file processing failed: {video_file.state.name}")
    
    model = genai.GenerativeModel(model_name="models/gemini-1.5-pro-latest")
    response = model.generate_content([GEMINI_PROMPT, video_file])
    genai.delete_file(video_file.name)
    
    if hasattr(response, 'text') and response.text:
        try:
            return eval(response.text)  # Convert string to dict
        except:
            return {"script": response.text, "editing_notes": []}
    raise Exception("No valid analysis was generated by Gemini.")

def generate_audio(script_text, voice_name, is_cheerful):
    """Generate audio from script using TTS API."""
    print(f"Generating audio (Voice: {voice_name}, Cheerful: {is_cheerful})")
    payload = {
        "text": script_text,
        "voice_name": voice_name,
        "cheerful": is_cheerful
    }
    
    response = requests.post(TTS_API_URL, json=payload, timeout=300)
    if response.status_code == 200:
        return response.content
    raise Exception(f"TTS API Error: {response.status_code} - {response.text}")

def apply_editing(video_path, audio_data, editing_notes, preset_name):
    """Apply editing effects to video based on analysis and preset."""
    print(f"Applying {preset_name} editing preset...")
    preset = EDITING_PRESETS[preset_name]
    
    # Save audio to temp file
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
        temp_audio.write(audio_data)
        temp_audio_path = temp_audio.name
    
    # Load video and audio
    video = VideoFileClip(video_path)
    audio = AudioFileClip(temp_audio_path)
    
    # Apply basic preset effects
    if preset.get('speed'):
        video = video.fx(speedx, preset['speed'])
    
    # Apply black bars for cinematic
    if preset.get('black_bars'):
        def add_black_bars(get_frame, t):
            frame = get_frame(t)
            height, width = frame.shape[:2]
            new_height = int(height * 0.85)
            bar_size = (height - new_height) // 2
            
            # Create black image
            black_bar = np.zeros((bar_size, width, 3), dtype=np.uint8)
            processed_frame = np.vstack([black_bar, frame, black_bar])
            return processed_frame
        
        video = video.fl(add_black_bars)
    
    # Apply editing notes
    clips = []
    current_start = 0
    
    for note in editing_notes:
        if current_start >= note['timestamp']:
            continue
            
        clip = video.subclip(current_start, note['timestamp'])
        
        # Apply effect based on note type
        if note['type'] == 'slow_mo':
            clip = clip.fx(speedx, 0.5)
        elif note['type'] == 'fast_cut':
            clip = clip.fx(speedx, 1.5)
        
        clips.append(clip)
        current_start = note['timestamp']
    
    # Add remaining video
    if current_start < video.duration:
        clips.append(video.subclip(current_start))
    
    # Concatenate all clips
    final_video = concatenate_videoclips(clips)
    final_video = final_video.set_audio(audio)
    
    # Apply aspect ratio if specified
    if preset.get('aspect_ratio'):
        target_ratio = preset['aspect_ratio']
        final_video = final_video.resize(height=target_ratio[1])
    
    # Generate output path
    output_path = os.path.join(app.config['DOWNLOAD_FOLDER'], f"edited_{os.path.basename(video_path)}")
    final_video.write_videofile(
        output_path,
        codec="libx264",
        audio_codec="aac",
        threads=4,
        preset='fast'
    )
    
    # Cleanup
    video.close()
    audio.close()
    os.unlink(temp_audio_path)
    
    return output_path

# --- 4. FLASK ROUTES ---

@app.route('/', methods=['GET'])
def index():
    """Render the main upload page."""
    return render_template('index.html', voices=VOICE_CHOICES, presets=EDITING_PRESETS.keys())

@app.route('/process', methods=['POST'])
def process_video():
    """Handle video upload and processing."""
    input_video_path = None
    
    try:
        # Validate file upload
        if 'video' not in request.files or request.files['video'].filename == '':
            flash("Please upload a video file.", "error")
            return render_template('index.html', 
                                voices=VOICE_CHOICES, 
                                presets=EDITING_PRESETS.keys())
        
        # Save uploaded file
        file = request.files['video']
        filename = secure_filename(file.filename)
        input_video_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(input_video_path)
        
        # Get processing options
        voice_choice = request.form.get('voice', 'Charon')
        is_cheerful = request.form.get('tone') == 'on'
        preset_name = request.form.get('preset', 'fast_cuts')
        
        # Analyze video
        analysis = analyze_video(input_video_path)
        script = analysis.get('script', '')
        editing_notes = analysis.get('editing_notes', [])
        
        # Generate audio
        audio_data = generate_audio(script, voice_choice, is_cheerful)
        
        # Apply editing and generate final video
        final_video_path = apply_editing(input_video_path, audio_data, editing_notes, preset_name)
        
        return jsonify({
            'status': 'success',
            'video_url': url_for('serve_video', filename=os.path.basename(final_video_path)),
            'script': script
        })
        
    except Exception as e:
        print(f"Processing error: {str(e)}")
        return jsonify({
            'status': 'error',
            'message': str(e)
        }), 500
        
    finally:
        # Clean up uploaded file
        if input_video_path and os.path.exists(input_video_path):
            os.remove(input_video_path)

@app.route('/downloads/<filename>')
def serve_video(filename):
    """Serve the processed video file."""
    return send_from_directory(app.config['DOWNLOAD_FOLDER'], filename)

# --- 5. APPLICATION ENTRY POINT ---
if __name__ == '__main__':
    app.run(host="0.0.0.0", port=7860)