Aiaudio / app.py
Athspi's picture
Update app.py
3ef3c9e verified
raw
history blame
38 kB
# ----------- START app.py -----------
import os
import uuid
import tempfile
import logging
import asyncio
from typing import List, Optional, Dict, Any
import io
import zipfile
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks, Query
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
# --- Basic Editing Imports ---
from pydub import AudioSegment
from pydub.exceptions import CouldntDecodeError
# --- AI & Advanced Audio Imports ---
try:
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor # Using pipeline for simplicity where possible
# Specific model imports might be needed depending on the chosen approach
# E.g. for Demucs V4 (Hybrid Transformer): from demucs.hdemucs import HDemucs
# from demucs.pretrained import hdemucs_mmi
import soundfile as sf
import numpy as np
import librosa # For resampling if needed
AI_LIBRARIES_AVAILABLE = True
print("AI and advanced audio libraries loaded.")
except ImportError as e:
print(f"Warning: Error importing AI/Audio libraries: {e}")
print("Ensure torch, transformers, soundfile, librosa are installed.")
print("AI features will be unavailable.")
AI_LIBRARIES_AVAILABLE = False
# Define dummy placeholders if needed, or just rely on AI_LIBRARIES_AVAILABLE flag
torch = None
pipeline = None
sf = None
np = None
librosa = None
# --- Configuration & Setup ---
TEMP_DIR = tempfile.gettempdir()
os.makedirs(TEMP_DIR, exist_ok=True)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Global Variables for Loaded Models ---
# Use dictionaries to potentially hold multiple models of each type later
enhancement_models: Dict[str, Any] = {} # Store model/processor or pipeline
separation_models: Dict[str, Any] = {} # Store model/processor or pipeline
# Target sampling rates for models (check model cards on Hugging Face!)
# These MUST match the models being loaded in download_models.py and load_hf_models
ENHANCEMENT_MODEL_ID = "speechbrain/sepformer-whamr-enhancement"
ENHANCEMENT_SR = 16000 # Sepformer uses 16kHz
# Note: facebook/demucs is deprecated in transformers >4.26. Use specific variants.
# Using facebook/htdemucs_ft for example (requires Demucs v4 style loading)
# Or find a model suitable for AutoModel if needed.
SEPARATION_MODEL_ID = "facebook/demucs_quantized" # Example using a quantized version (smaller, faster CPU)
# SEPARATION_MODEL_ID = "facebook/hdemucs_mmi" # Example for Multi-Media Instructions model (if using demucs lib)
DEMUCS_SR = 44100 # Demucs default is 44.1kHz
# Define HF_HOME cache directory *within* the container if downloading during build
HF_CACHE_DIR = os.environ.get("HF_HOME", "/app/hf_cache") # Use HF_HOME from Dockerfile or default
# --- Helper Functions (cleanup_file, save_upload_file, load_audio_for_hf, save_hf_audio) ---
# (Include the helper functions from the previous app.py example here)
# ...
def cleanup_file(file_path: str):
"""Safely remove a file."""
try:
if file_path and os.path.exists(file_path):
os.remove(file_path)
logger.info(f"Cleaned up temporary file: {file_path}")
except Exception as e:
logger.error(f"Error cleaning up file {file_path}: {e}", exc_info=False)
async def save_upload_file(upload_file: UploadFile, prefix: str = "upload_") -> str:
"""Saves an uploaded file to a temporary location and returns the path."""
_, file_extension = os.path.splitext(upload_file.filename)
if not file_extension: file_extension = ".wav" # Default if no extension
temp_file_path = os.path.join(TEMP_DIR, f"{prefix}{uuid.uuid4().hex}{file_extension}")
try:
with open(temp_file_path, "wb") as buffer:
while content := await upload_file.read(1024 * 1024): buffer.write(content)
logger.info(f"Saved uploaded file '{upload_file.filename}' to temp path: {temp_file_path}")
return temp_file_path
except Exception as e:
logger.error(f"Failed to save uploaded file {upload_file.filename}: {e}", exc_info=True)
cleanup_file(temp_file_path)
raise HTTPException(status_code=500, detail=f"Could not save uploaded file: {upload_file.filename}")
finally:
await upload_file.close()
def load_audio_for_hf(file_path: str, target_sr: Optional[int] = None) -> tuple[np.ndarray, int]:
"""Loads audio using soundfile, converts to mono float32, optionally resamples."""
if not AI_LIBRARIES_AVAILABLE or sf is None or np is None:
raise HTTPException(status_code=501, detail="Audio processing libraries (soundfile, numpy) not available.")
try:
audio, orig_sr = sf.read(file_path, dtype='float32', always_2d=False)
logger.info(f"Loaded audio '{os.path.basename(file_path)}' with SR={orig_sr}, shape={audio.shape}, dtype={audio.dtype}")
if audio.ndim > 1 and audio.shape[-1] > 1: # Check last dimension for channels
if audio.shape[0] == min(audio.shape): # If channels are first dim
audio = audio.T # Transpose to (samples, channels)
audio = np.mean(audio, axis=1)
logger.info(f"Converted audio to mono, new shape: {audio.shape}")
elif audio.ndim > 1: # If shape is like (1, N) or (N, 1)
audio = audio.squeeze() # Remove singleton dimension
logger.info(f"Squeezed audio to 1D, new shape: {audio.shape}")
if target_sr and orig_sr != target_sr:
if librosa is None:
raise RuntimeError("Librosa is required for resampling but not installed.")
logger.info(f"Resampling from {orig_sr} Hz to {target_sr} Hz...")
# Ensure audio is contiguous before resampling if necessary
if not audio.flags['C_CONTIGUOUS']:
audio = np.ascontiguousarray(audio)
audio = librosa.resample(y=audio, orig_sr=orig_sr, target_sr=target_sr)
logger.info(f"Resampled audio shape: {audio.shape}")
current_sr = target_sr
else:
current_sr = orig_sr
return audio, current_sr
except Exception as e:
logger.error(f"Error loading/processing audio file {file_path} for HF: {e}", exc_info=True)
raise HTTPException(status_code=415, detail=f"Could not load or process audio file: {os.path.basename(file_path)}. Ensure it's a valid audio format.")
def save_hf_audio(audio_data: np.ndarray, sampling_rate: int, output_format: str = "wav") -> str:
"""Saves a NumPy audio array to a temporary file."""
if not AI_LIBRARIES_AVAILABLE or sf is None or np is None:
raise HTTPException(status_code=501, detail="Audio processing libraries (soundfile, numpy) not available.")
output_filename = f"ai_output_{uuid.uuid4().hex}.{output_format}"
output_path = os.path.join(TEMP_DIR, output_filename)
try:
logger.info(f"Saving AI processed audio to {output_path} (SR={sampling_rate}, format={output_format}, shape={audio_data.shape})")
# Ensure data is float32 for common formats like wav/flac
if audio_data.dtype != np.float32:
logger.warning(f"Audio data has dtype {audio_data.dtype}, converting to float32.")
audio_data = audio_data.astype(np.float32)
# Clip data to avoid issues with some formats/players if values go beyond [-1, 1]
audio_data = np.clip(audio_data, -1.0, 1.0)
# Use soundfile for lossless formats
if output_format.lower() in ['wav', 'flac']:
sf.write(output_path, audio_data, sampling_rate, format=output_format.upper())
else:
# For lossy formats like mp3, use pydub after converting numpy array
logger.debug("Using pydub for lossy format export...")
# Scale float32 [-1, 1] to int16 for pydub
audio_int16 = (audio_data * 32767).astype(np.int16)
if audio_int16.ndim > 1: # Should be mono by now, but double check
logger.warning("Audio data still has multiple dimensions before pydub export, attempting mean.")
audio_int16 = np.mean(audio_int16, axis=1).astype(np.int16)
segment = AudioSegment(
audio_int16.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_int16.dtype.itemsize,
channels=1 # Assuming mono output from AI models for now
)
segment.export(output_path, format=output_format)
return output_path
except Exception as e:
logger.error(f"Error saving AI processed audio to {output_path}: {e}", exc_info=True)
cleanup_file(output_path)
raise HTTPException(status_code=500, detail="Failed to save processed audio.")
# --- Synchronous AI Inference Functions (_run_enhancement_sync, _run_separation_sync) ---
# (Include the sync functions from the previous app.py example here)
# Make sure they handle potential model loading issues gracefully
# ...
def _run_enhancement_sync(model_key: str, audio_data: np.ndarray, sampling_rate: int) -> np.ndarray:
"""Synchronous wrapper for enhancement model inference."""
if not AI_LIBRARIES_AVAILABLE or model_key not in enhancement_models:
raise ValueError(f"Enhancement model '{model_key}' not available or AI libraries missing.")
model_info = enhancement_models[model_key]
# Adapt based on whether model_info holds a pipeline or model/processor
# This example assumes a pipeline-like object is stored
enhancer = model_info # Assuming pipeline
if not enhancer: raise ValueError(f"Enhancement pipeline '{model_key}' is None.")
try:
logger.info(f"Running speech enhancement with '{model_key}' (input shape: {audio_data.shape}, SR: {sampling_rate})...")
# Usage depends heavily on the specific model/pipeline interface
# For SpeechBrain models often used *without* HF pipeline:
# Example: enhanced_wav = enhancer.enhance_batch(torch.tensor(audio_data).unsqueeze(0), lengths=torch.tensor([audio_data.shape[0]]))
# enhanced_audio = enhanced_wav.squeeze(0).cpu().numpy()
# If using a generic HF pipeline:
result = enhancer({"raw": audio_data, "sampling_rate": sampling_rate})
enhanced_audio = result["audio"]["array"] # Adjust based on actual pipeline output
logger.info(f"Enhancement complete (output shape: {enhanced_audio.shape})")
return enhanced_audio
except Exception as e:
logger.error(f"Error during synchronous enhancement inference with '{model_key}': {e}", exc_info=True)
raise # Re-raise to be caught by the async wrapper
def _run_separation_sync(model_key: str, audio_data: np.ndarray, sampling_rate: int) -> Dict[str, np.ndarray]:
"""Synchronous wrapper for source separation model inference."""
if not AI_LIBRARIES_AVAILABLE or model_key not in separation_models:
raise ValueError(f"Separation model '{model_key}' not available or AI libraries missing.")
model_info = separation_models[model_key]
model = model_info # Assuming direct model object is stored for Demucs
if not model: raise ValueError(f"Separation model '{model_key}' is None.")
try:
logger.info(f"Running source separation with '{model_key}' (input shape: {audio_data.shape}, SR: {sampling_rate})...")
# Prepare input tensor for Demucs-like models
# Expects (batch, channels, samples), float32
if audio_data.ndim == 1:
# Need stereo for standard Demucs
logger.debug("Separation input is mono, duplicating to create stereo.")
audio_data = np.stack([audio_data, audio_data], axis=0) # (2, samples)
if audio_data.shape[0] != 2:
# If it's somehow (samples, 2), transpose
if audio_data.shape[1] == 2: audio_data = audio_data.T
else: raise ValueError(f"Unexpected input audio shape for separation: {audio_data.shape}")
audio_tensor = torch.tensor(audio_data, dtype=torch.float32).unsqueeze(0) # (1, 2, samples)
# Move to model's device (CPU or GPU)
device = next(model.parameters()).device
logger.debug(f"Moving separation tensor to device: {device}")
audio_tensor = audio_tensor.to(device)
# Perform inference
with torch.no_grad():
logger.debug("Starting model inference for separation...")
# Output shape depends on model, e.g., (batch, stems, channels, samples)
sources = model(audio_tensor)[0] # Remove batch dim
logger.debug(f"Model inference complete, sources shape: {sources.shape}")
# Detach, move to CPU, convert to numpy
sources_np = sources.detach().cpu().numpy() # (stems, channels, samples)
# Define stem order based on the *specific* Demucs model used
# This order is for default Demucs v3/v4 (facebook/demucs, facebook/htdemucs_ft, etc.)
stem_names = ['drums', 'bass', 'other', 'vocals']
if sources_np.shape[0] != len(stem_names):
logger.warning(f"Model output {sources_np.shape[0]} stems, expected {len(stem_names)}. Stem names might be incorrect.")
# Fallback names if shape mismatch
stem_names = [f"stem_{i+1}" for i in range(sources_np.shape[0])]
stems = {}
for i, name in enumerate(stem_names):
# Average channels to get mono stem
mono_stem = np.mean(sources_np[i], axis=0)
stems[name] = mono_stem
logger.debug(f"Extracted stem '{name}', shape: {mono_stem.shape}")
logger.info(f"Separation complete. Found stems: {list(stems.keys())}")
return stems
except Exception as e:
logger.error(f"Error during synchronous separation inference with '{model_key}': {e}", exc_info=True)
raise
# --- Model Loading Function ---
# (Include the load_hf_models function from the previous app.py example here)
# Make sure it uses the correct model IDs and potentially adjusts loading logic
# if using libraries like `demucs` directly.
# ...
def load_hf_models():
"""Loads Hugging Face models at startup."""
if not AI_LIBRARIES_AVAILABLE:
logger.warning("Skipping Hugging Face model loading as libraries are missing.")
return
global enhancement_models, separation_models
# --- Load Enhancement Model ---
enhancement_key = "speechbrain_enhancer" # Internal key
try:
logger.info(f"Attempting to load enhancement model: {ENHANCEMENT_MODEL_ID}...")
# SpeechBrain models often require specific loading from their toolkit or HF spaces
# This might involve cloning a repo or using specific classes.
# Using HF pipeline if available, otherwise manual load.
# Example using pipeline (might not work for all speechbrain models):
# enhancement_models[enhancement_key] = pipeline(
# "audio-enhancement", # Or appropriate task
# model=ENHANCEMENT_MODEL_ID,
# cache_dir=HF_CACHE_DIR,
# device=0 if torch.cuda.is_available() else -1 # Use GPU if possible
# )
# Manual load might be needed:
# from speechbrain.pretrained import SepformerEnhancement
# enhancer = SepformerEnhancement.from_hparams(
# source=ENHANCEMENT_MODEL_ID,
# savedir=os.path.join(HF_CACHE_DIR, "speechbrain", ENHANCEMENT_MODEL_ID.split('/')[-1]),
# run_opts={"device": "cuda" if torch.cuda.is_available() else "cpu"}
# )
# enhancement_models[enhancement_key] = enhancer
logger.warning(f"Actual loading for {ENHANCEMENT_MODEL_ID} skipped - requires SpeechBrain toolkit or specific pipeline setup.")
# To make the endpoint testable without full setup:
# enhancement_models[enhancement_key] = None # Or a dummy function
except Exception as e:
logger.error(f"Failed to load enhancement model '{ENHANCEMENT_MODEL_ID}': {e}", exc_info=False)
# --- Load Separation Model (Demucs) ---
separation_key = "demucs_separator" # Internal key
try:
logger.info(f"Attempting to load separation model: {SEPARATION_MODEL_ID}...")
# Loading Demucs models can be complex.
# Option 1: Use AutoModel if the HF Hub version supports it (less common for Demucs)
# Option 2: Use the `demucs` library (recommended if installed: pip install -U demucs)
# Option 3: Find a Transformers-compatible version if available.
# Example using AutoModel (Try this first, might work for some quantized/HF versions)
try:
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Loading Demucs on device: {device}")
# Check if AutoModelForSpeechSeq2Seq is appropriate, might need a different AutoModel class
separation_models[separation_key] = AutoModelForSpeechSeq2Seq.from_pretrained(
SEPARATION_MODEL_ID,
cache_dir=HF_CACHE_DIR
# Add trust_remote_code=True if needed for custom model code on HF hub
).to(device)
# Check if the loaded model has an 'eval' method (common for PyTorch models)
if hasattr(separation_models[separation_key], 'eval'):
separation_models[separation_key].eval() # Set to evaluation mode
logger.info(f"Successfully loaded separation model '{SEPARATION_MODEL_ID}' using AutoModel.")
except Exception as auto_model_err:
logger.warning(f"Failed to load '{SEPARATION_MODEL_ID}' using AutoModel: {auto_model_err}. Consider installing 'demucs' library.")
separation_models[separation_key] = None # Ensure it's None if loading failed
# Example using `demucs` library (if installed)
# try:
# import demucs.separate
# model = demucs.apply.load_model(pretrained_model_path_or_url) # Needs adjustment
# separation_models[separation_key] = model
# logger.info(f"Successfully loaded separation model using 'demucs' library.")
# except ImportError:
# logger.error("Cannot load Demucs: 'demucs' library not found. Please run 'pip install -U demucs'.")
# except Exception as demucs_lib_err:
# logger.error(f"Error loading model using 'demucs' library: {demucs_lib_err}")
except Exception as e:
logger.error(f"General error loading separation model '{SEPARATION_MODEL_ID}': {e}", exc_info=False)
if separation_key in separation_models: separation_models[separation_key] = None
# --- FastAPI App and Endpoints ---
app = FastAPI(
title="AI Audio Editor API",
description="API for basic audio editing and AI-powered enhancement & separation. Requires FFmpeg and HF model dependencies.",
version="2.0.0",
)
@app.on_event("startup")
async def startup_event():
"""Load models when the application starts."""
logger.info("Application startup: Loading AI models (this may take time)...")
await asyncio.to_thread(load_hf_models)
logger.info("Model loading process finished.")
# --- API Endpoints ---
# (Include / , /trim, /concat, /volume, /convert endpoints here - same as previous version)
# ...
@app.get("/", tags=["General"])
def read_root():
"""Root endpoint providing a welcome message and available features."""
features = ["/trim", "/concat", "/volume", "/convert"]
ai_features = []
# Check if models were successfully loaded (i.e., not None)
if any(model is not None for model in enhancement_models.values()): ai_features.append("/enhance")
if any(model is not None for model in separation_models.values()): ai_features.append("/separate")
return {
"message": "Welcome to the AI Audio Editor API.",
"basic_features": features,
"ai_features": ai_features if ai_features else "None loaded (check logs)",
"notes": "Requires FFmpeg. AI features require specific models loaded at startup (check logs)."
}
@app.post("/trim", tags=["Basic Editing"])
async def trim_audio(
background_tasks: BackgroundTasks,
file: UploadFile = File(..., description="Audio file to trim."),
start_ms: int = Form(..., description="Start time in milliseconds."),
end_ms: int = Form(..., description="End time in milliseconds.")
):
"""Trims an audio file to the specified start and end times (in milliseconds)."""
if start_ms < 0 or end_ms <= start_ms:
raise HTTPException(status_code=422, detail="Invalid start/end times. Ensure start_ms >= 0 and end_ms > start_ms.")
logger.info(f"Trim request: file='{file.filename}', start={start_ms}ms, end={end_ms}ms")
input_path = None
output_path = None
try:
input_path = await save_upload_file(file, prefix="trim_in_")
background_tasks.add_task(cleanup_file, input_path) # Schedule input cleanup
# Use Pydub for basic trim
audio = AudioSegment.from_file(input_path)
trimmed_audio = audio[start_ms:end_ms]
logger.info(f"Audio trimmed to {len(trimmed_audio)}ms")
original_format = os.path.splitext(file.filename)[1][1:].lower() or "mp3"
if not original_format or original_format == "tmp": original_format = "mp3"
output_filename = f"trimmed_{uuid.uuid4().hex}.{original_format}"
output_path = os.path.join(TEMP_DIR, output_filename)
trimmed_audio.export(output_path, format=original_format)
background_tasks.add_task(cleanup_file, output_path) # Schedule output cleanup
return FileResponse(
path=output_path,
media_type=f"audio/{original_format}", # Attempt correct media type
filename=f"trimmed_{file.filename}"
)
except CouldntDecodeError:
logger.warning(f"pydub failed to decode: {file.filename}")
raise HTTPException(status_code=415, detail="Unsupported audio format or corrupted file.")
except Exception as e:
logger.error(f"Error during trim operation: {e}", exc_info=True)
if output_path: cleanup_file(output_path) # Immediate cleanup on error
if input_path: cleanup_file(input_path) # Immediate cleanup on error
if isinstance(e, HTTPException): raise e
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during trimming: {str(e)}")
@app.post("/concat", tags=["Basic Editing"])
async def concatenate_audio(
background_tasks: BackgroundTasks,
files: List[UploadFile] = File(..., description="Two or more audio files to join in order."),
output_format: str = Form("mp3", description="Desired output format (e.g., 'mp3', 'wav', 'ogg').")
):
"""Concatenates two or more audio files sequentially."""
if len(files) < 2:
raise HTTPException(status_code=422, detail="Please upload at least two files to concatenate.")
logger.info(f"Concatenate request: {len(files)} files, output_format='{output_format}'")
input_paths = []
loaded_audios = []
output_path = None
try:
combined_audio = AudioSegment.empty()
first_filename_base = "combined"
for i, file in enumerate(files):
input_path = await save_upload_file(file, prefix=f"concat_{i}_")
input_paths.append(input_path)
background_tasks.add_task(cleanup_file, input_path)
audio = AudioSegment.from_file(input_path)
combined_audio += audio
if i == 0: first_filename_base = os.path.splitext(file.filename)[0]
logger.info(f"Appended '{file.filename}', current total duration: {len(combined_audio)}ms")
if len(combined_audio) == 0:
raise HTTPException(status_code=500, detail="No audio data after attempting concatenation.")
output_filename_final = f"concat_{first_filename_base}_and_{len(files)-1}_others.{output_format}"
output_path = os.path.join(TEMP_DIR, f"concat_out_{uuid.uuid4().hex}.{output_format}")
combined_audio.export(output_path, format=output_format)
background_tasks.add_task(cleanup_file, output_path) # Schedule output cleanup
return FileResponse(
path=output_path,
media_type=f"audio/{output_format}",
filename=output_filename_final
)
except CouldntDecodeError as e:
logger.warning(f"pydub failed to decode one of the concat files: {e}")
raise HTTPException(status_code=415, detail=f"Unsupported format or corrupted file among inputs: {e}")
except Exception as e:
logger.error(f"Error during concat operation: {e}", exc_info=True)
if output_path: cleanup_file(output_path)
for p in input_paths: cleanup_file(p)
if isinstance(e, HTTPException): raise e
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during concatenation: {str(e)}")
@app.post("/volume", tags=["Basic Editing"])
async def change_volume(
background_tasks: BackgroundTasks,
file: UploadFile = File(..., description="Audio file to adjust volume for."),
change_db: float = Form(..., description="Volume change in decibels (dB). Positive values increase volume, negative values decrease.")
):
"""Adjusts the volume of an audio file by a specified decibel amount."""
logger.info(f"Volume request: file='{file.filename}', change_db={change_db}dB")
input_path = None
output_path = None
try:
input_path = await save_upload_file(file, prefix="volume_in_")
background_tasks.add_task(cleanup_file, input_path)
audio = AudioSegment.from_file(input_path)
adjusted_audio = audio + change_db
logger.info(f"Volume adjusted by {change_db}dB.")
original_format = os.path.splitext(file.filename)[1][1:].lower() or "mp3"
if not original_format or original_format == "tmp": original_format = "mp3"
output_filename_final = f"volume_{change_db}dB_{file.filename}"
output_path = os.path.join(TEMP_DIR, f"volume_out_{uuid.uuid4().hex}.{original_format}")
adjusted_audio.export(output_path, format=original_format)
background_tasks.add_task(cleanup_file, output_path)
return FileResponse(
path=output_path,
media_type=f"audio/{original_format}",
filename=output_filename_final
)
except CouldntDecodeError:
logger.warning(f"pydub failed to decode: {file.filename}")
raise HTTPException(status_code=415, detail="Unsupported audio format or corrupted file.")
except Exception as e:
logger.error(f"Error during volume operation: {e}", exc_info=True)
if output_path: cleanup_file(output_path)
if input_path: cleanup_file(input_path)
if isinstance(e, HTTPException): raise e
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during volume adjustment: {str(e)}")
@app.post("/convert", tags=["Basic Editing"])
async def convert_format(
background_tasks: BackgroundTasks,
file: UploadFile = File(..., description="Audio file to convert."),
output_format: str = Form(..., description="Target audio format (e.g., 'mp3', 'wav', 'ogg', 'flac').")
):
"""Converts an audio file to a different format."""
allowed_formats = {'mp3', 'wav', 'ogg', 'flac', 'aac', 'm4a'}
if output_format.lower() not in allowed_formats:
raise HTTPException(status_code=422, detail=f"Invalid output format. Allowed: {', '.join(allowed_formats)}")
logger.info(f"Convert request: file='{file.filename}', output_format='{output_format}'")
input_path = None
output_path = None
try:
input_path = await save_upload_file(file, prefix="convert_in_")
background_tasks.add_task(cleanup_file, input_path)
audio = AudioSegment.from_file(input_path)
output_format_lower = output_format.lower()
filename_base = os.path.splitext(file.filename)[0]
output_filename_final = f"{filename_base}_converted.{output_format_lower}"
output_path = os.path.join(TEMP_DIR, f"convert_out_{uuid.uuid4().hex}.{output_format_lower}")
audio.export(output_path, format=output_format_lower)
background_tasks.add_task(cleanup_file, output_path)
return FileResponse(
path=output_path,
media_type=f"audio/{output_format_lower}",
filename=output_filename_final
)
except CouldntDecodeError:
logger.warning(f"pydub failed to decode: {file.filename}")
raise HTTPException(status_code=415, detail="Unsupported audio format or corrupted file.")
except Exception as e:
logger.error(f"Error during convert operation: {e}", exc_info=True)
if output_path: cleanup_file(output_path)
if input_path: cleanup_file(input_path)
if isinstance(e, HTTPException): raise e
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during format conversion: {str(e)}")
# (Include /enhance and /separate AI endpoints here - same as previous version)
# ...
@app.post("/enhance", tags=["AI Editing"])
async def enhance_speech(
background_tasks: BackgroundTasks,
file: UploadFile = File(..., description="Noisy speech audio file to enhance."),
model_key: str = Query("speechbrain_enhancer", description="Internal key of the enhancement model to use."),
output_format: str = Form("wav", description="Output format for the enhanced audio (wav, flac recommended).")
):
"""Enhances speech audio using a pre-loaded AI model (experimental)."""
if not AI_LIBRARIES_AVAILABLE:
raise HTTPException(status_code=501, detail="AI processing libraries not available.")
if model_key not in enhancement_models or enhancement_models[model_key] is None:
logger.error(f"Enhancement model key '{model_key}' requested but model not loaded.")
raise HTTPException(status_code=503, detail=f"Enhancement model '{model_key}' is not loaded or available. Check server logs.")
logger.info(f"Enhance request: file='{file.filename}', model_key='{model_key}', format='{output_format}'")
input_path = None
output_path = None
try:
input_path = await save_upload_file(file, prefix="enhance_in_")
background_tasks.add_task(cleanup_file, input_path)
# Load audio, ensure correct SR for the model
logger.debug(f"Loading audio for enhancement, target SR: {ENHANCEMENT_SR}")
audio_data, current_sr = load_audio_for_hf(input_path, target_sr=ENHANCEMENT_SR)
if current_sr != ENHANCEMENT_SR: # Should have been resampled, but double check
logger.warning(f"Audio SR after loading is {current_sr}, expected {ENHANCEMENT_SR}. Check resampling.")
# Depending on model strictness, could raise error or proceed cautiously.
# raise HTTPException(status_code=500, detail="Audio resampling failed.")
# Run inference in a separate thread
logger.info("Submitting enhancement task to background thread...")
enhanced_audio = await asyncio.to_thread(
_run_enhancement_sync, model_key, audio_data, current_sr # Pass key, data, and ACTUAL sr used
)
logger.info("Enhancement task completed.")
# Save the result
output_path = save_hf_audio(enhanced_audio, ENHANCEMENT_SR, output_format) # Save with model's target SR
background_tasks.add_task(cleanup_file, output_path)
output_filename_final = f"enhanced_{os.path.splitext(file.filename)[0]}.{output_format}"
return FileResponse(
path=output_path,
media_type=f"audio/{output_format}",
filename=output_filename_final
)
except Exception as e:
logger.error(f"Error during enhancement operation: {e}", exc_info=True)
if output_path: cleanup_file(output_path)
if input_path: cleanup_file(input_path)
if isinstance(e, HTTPException): raise e
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during enhancement: {str(e)}")
@app.post("/separate", tags=["AI Editing"])
async def separate_sources(
background_tasks: BackgroundTasks,
file: UploadFile = File(..., description="Music audio file to separate into stems."),
model_key: str = Query("demucs_separator", description="Internal key of the separation model to use."),
stems: List[str] = Form(..., description="List of stems to extract (e.g., 'vocals', 'drums', 'bass', 'other')."),
output_format: str = Form("wav", description="Output format for the stems (wav, flac recommended).")
):
"""Separates music into stems (vocals, drums, bass, other) using a pre-loaded AI model (experimental). Returns a ZIP archive."""
if not AI_LIBRARIES_AVAILABLE:
raise HTTPException(status_code=501, detail="AI processing libraries not available.")
if model_key not in separation_models or separation_models[model_key] is None:
logger.error(f"Separation model key '{model_key}' requested but model not loaded.")
raise HTTPException(status_code=503, detail=f"Separation model '{model_key}' is not loaded or available. Check server logs.")
valid_stems = {'vocals', 'drums', 'bass', 'other'} # Based on typical Demucs output
requested_stems = set(s.lower() for s in stems)
if not requested_stems.issubset(valid_stems):
# Allow if all stems are requested even if validation set is smaller? Or just error.
raise HTTPException(status_code=422, detail=f"Invalid stem(s) requested. Valid stems are generally: {', '.join(valid_stems)}")
logger.info(f"Separate request: file='{file.filename}', model_key='{model_key}', stems={requested_stems}, format='{output_format}'")
input_path = None
stem_output_paths: Dict[str, str] = {}
zip_buffer = io.BytesIO() # Use BytesIO for in-memory ZIP
try:
input_path = await save_upload_file(file, prefix="separate_in_")
background_tasks.add_task(cleanup_file, input_path) # Schedule input cleanup
# Load audio, ensure correct SR for the model
logger.debug(f"Loading audio for separation, target SR: {DEMUCS_SR}")
audio_data, current_sr = load_audio_for_hf(input_path, target_sr=DEMUCS_SR)
if current_sr != DEMUCS_SR:
logger.warning(f"Audio SR after loading is {current_sr}, expected {DEMUCS_SR}. Check resampling.")
# raise HTTPException(status_code=500, detail="Audio resampling failed.")
# Run inference in a separate thread
logger.info("Submitting separation task to background thread...")
all_separated_stems = await asyncio.to_thread(
_run_separation_sync, model_key, audio_data, current_sr # Pass key, data, actual SR
)
logger.info("Separation task completed.")
# --- Create ZIP file in memory ---
zip_filename_base = f"separated_{os.path.splitext(file.filename)[0]}"
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
logger.info(f"Creating ZIP archive in memory...")
found_stems_count = 0
for stem_name in requested_stems:
if stem_name in all_separated_stems:
stem_data = all_separated_stems[stem_name]
if stem_data is None or stem_data.size == 0:
logger.warning(f"Stem '{stem_name}' data is empty, skipping.")
continue
# Save stem temporarily to disk first (needed for pydub/sf.write)
logger.debug(f"Saving temporary stem file for '{stem_name}'...")
stem_path = save_hf_audio(stem_data, DEMUCS_SR, output_format) # Save with model's target SR
stem_output_paths[stem_name] = stem_path # Keep track for cleanup
background_tasks.add_task(cleanup_file, stem_path) # Schedule cleanup
# Add the saved stem file to the ZIP archive
archive_name = f"{stem_name}.{output_format}" # Simple name inside zip
zipf.write(stem_path, arcname=archive_name)
logger.info(f"Added '{archive_name}' to ZIP.")
found_stems_count += 1
else:
logger.warning(f"Requested stem '{stem_name}' not found in model output keys: {list(all_separated_stems.keys())}")
if found_stems_count == 0:
raise HTTPException(status_code=404, detail="None of the requested stems were found or generated successfully.")
zip_buffer.seek(0) # Rewind buffer pointer
# Return the ZIP file via StreamingResponse
zip_filename_download = f"{zip_filename_base}.zip"
logger.info(f"Sending ZIP file '{zip_filename_download}'")
return StreamingResponse(
zip_buffer, # Pass the BytesIO buffer directly
media_type="application/zip",
headers={'Content-Disposition': f'attachment; filename="{zip_filename_download}"'}
)
except Exception as e:
logger.error(f"Error during separation operation: {e}", exc_info=True)
# Cleanup temporary stem files if they exist
for path in stem_output_paths.values(): cleanup_file(path)
# Close buffer just in case (though StreamingResponse should handle it)
# if zip_buffer and not zip_buffer.closed: zip_buffer.close()
if input_path: cleanup_file(input_path)
if isinstance(e, HTTPException): raise e
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during separation: {str(e)}")
# ----------- END app.py -----------