Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,889 +1,441 @@
|
|
1 |
-
# app.py
|
2 |
import os
|
3 |
import uuid
|
4 |
import tempfile
|
5 |
import logging
|
6 |
-
import
|
7 |
-
from typing import List, Optional,
|
8 |
-
import traceback # For detailed error logging
|
9 |
|
10 |
-
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks
|
11 |
-
from fastapi.responses import FileResponse
|
12 |
-
import io
|
13 |
-
import zipfile
|
14 |
-
|
15 |
-
# --- Basic Editing Imports ---
|
16 |
from pydub import AudioSegment
|
17 |
from pydub.exceptions import CouldntDecodeError
|
18 |
|
19 |
-
# --- AI
|
20 |
-
#
|
21 |
-
logger_init = logging.getLogger("AppInit")
|
22 |
-
logger_init.setLevel(logging.INFO)
|
23 |
-
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
24 |
-
# Create console handler and set level to info
|
25 |
-
ch = logging.StreamHandler()
|
26 |
-
ch.setLevel(logging.INFO)
|
27 |
-
ch.setFormatter(formatter)
|
28 |
-
# Avoid adding handler multiple times if script reloads
|
29 |
-
if not logger_init.handlers:
|
30 |
-
logger_init.addHandler(ch)
|
31 |
-
|
32 |
-
AI_LIBS_AVAILABLE = False
|
33 |
try:
|
34 |
-
|
35 |
-
import
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
import
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
import demucs.apply
|
47 |
-
logger_init.info("AI and advanced audio libraries imported successfully.")
|
48 |
-
AI_LIBS_AVAILABLE = True
|
49 |
-
except ImportError as e:
|
50 |
-
logger_init.error(f"CRITICAL: Error importing AI/Audio libraries: {e}", exc_info=True)
|
51 |
-
logger_init.error("Ensure torch, soundfile, librosa, speechbrain, demucs are in requirements.txt and installed correctly.")
|
52 |
-
logger_init.error("AI features will be unavailable.")
|
53 |
-
# Define placeholders so the rest of the code doesn't break completely on import error
|
54 |
-
torch = None
|
55 |
-
sf = None
|
56 |
-
np = None
|
57 |
-
librosa = None
|
58 |
-
speechbrain = None
|
59 |
-
demucs = None
|
60 |
|
61 |
# --- Configuration & Setup ---
|
62 |
TEMP_DIR = tempfile.gettempdir()
|
63 |
-
|
64 |
-
try:
|
65 |
-
os.makedirs(TEMP_DIR, exist_ok=True)
|
66 |
-
except OSError as e:
|
67 |
-
logger_init.error(f"Could not create temporary directory {TEMP_DIR}: {e}")
|
68 |
-
# Fallback or raise an error depending on desired behavior
|
69 |
-
TEMP_DIR = "." # Use current directory as fallback (less ideal)
|
70 |
-
logger_init.warning(f"Using current directory '{TEMP_DIR}' for temporary files.")
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
# This logger will be used by endpoint handlers
|
75 |
logger = logging.getLogger(__name__)
|
76 |
|
77 |
-
# --- Global
|
78 |
-
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
else:
|
94 |
-
DEVICE = "cpu" # Fallback if torch failed import
|
95 |
-
logger_init.info("Torch not available or AI libs failed import, defaulting device to CPU.")
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
# --- Helper Functions ---
|
99 |
|
100 |
-
def
|
101 |
-
"""Safely remove a file."""
|
102 |
try:
|
103 |
-
if
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
except Exception as e:
|
107 |
-
|
108 |
-
logger.error(f"Error cleaning up file {file_path}: {e}", exc_info=False)
|
109 |
|
110 |
-
async def save_upload_file(upload_file: UploadFile
|
111 |
"""Saves an uploaded file to a temporary location and returns the path."""
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
if not file_extension: file_extension = ".wav"
|
118 |
-
temp_file_path = os.path.join(TEMP_DIR, f"{prefix}{uuid.uuid4().hex}{file_extension}")
|
119 |
|
120 |
try:
|
121 |
-
logger.debug(f"Attempting to save uploaded file to: {temp_file_path}")
|
122 |
with open(temp_file_path, "wb") as buffer:
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
logger.info(f"Saved uploaded file '{upload_file.filename}' ({upload_file.content_type}) to temp path: {temp_file_path}")
|
127 |
return temp_file_path
|
128 |
except Exception as e:
|
129 |
-
logger.error(f"Failed to save uploaded file
|
130 |
-
|
131 |
raise HTTPException(status_code=500, detail=f"Could not save uploaded file: {upload_file.filename}")
|
132 |
finally:
|
133 |
-
|
134 |
-
try:
|
135 |
-
await upload_file.close()
|
136 |
-
except Exception:
|
137 |
-
pass # Ignore errors during close if already failed
|
138 |
-
|
139 |
-
|
140 |
-
# --- Audio Loading/Saving Functions ---
|
141 |
-
|
142 |
-
def load_audio_for_hf(file_path: str, target_sr: Optional[int] = None) -> tuple[torch.Tensor, int]:
|
143 |
-
"""Loads audio using soundfile, converts to mono float32 Torch tensor, optionally resamples."""
|
144 |
-
if not AI_LIBS_AVAILABLE:
|
145 |
-
raise HTTPException(status_code=501, detail="AI Audio processing libraries not available.")
|
146 |
-
if not os.path.exists(file_path):
|
147 |
-
raise HTTPException(status_code=500, detail=f"Internal error: Input audio file not found at {file_path}")
|
148 |
-
|
149 |
-
try:
|
150 |
-
audio, orig_sr = sf.read(file_path, dtype='float32', always_2d=False)
|
151 |
-
logger.info(f"Loaded '{os.path.basename(file_path)}' - SR={orig_sr}, Shape={audio.shape}, dtype={audio.dtype}")
|
152 |
-
|
153 |
-
# Ensure mono
|
154 |
-
if audio.ndim > 1:
|
155 |
-
# Check which dimension is smaller (likely channels)
|
156 |
-
channel_dim = np.argmin(audio.shape)
|
157 |
-
if audio.shape[channel_dim] > 1 and audio.shape[channel_dim] < 10: # Heuristic: <10 channels
|
158 |
-
logger.info(f"Detected {audio.shape[channel_dim]} channels. Converting to mono by averaging axis {channel_dim}.")
|
159 |
-
audio = np.mean(audio, axis=channel_dim)
|
160 |
-
else: # Fallback or if shape is ambiguous (e.g., very short stereo)
|
161 |
-
logger.warning(f"Audio has shape {audio.shape}. Taking first channel/element assuming mono or channel-first.")
|
162 |
-
audio = audio[0] if channel_dim == 0 else audio[:, 0] # Select first index of the likely channel dimension
|
163 |
-
|
164 |
-
logger.debug(f"Shape after mono conversion: {audio.shape}")
|
165 |
-
|
166 |
-
|
167 |
-
# Ensure it's now 1D
|
168 |
-
audio = audio.flatten()
|
169 |
-
|
170 |
-
# Convert numpy array to torch tensor
|
171 |
-
audio_tensor = torch.from_numpy(audio).float()
|
172 |
-
|
173 |
-
# Resample if necessary using librosa
|
174 |
-
current_sr = orig_sr
|
175 |
-
if target_sr and orig_sr != target_sr:
|
176 |
-
if librosa is None: raise RuntimeError("Librosa missing for resampling")
|
177 |
-
logger.info(f"Resampling from {orig_sr} Hz to {target_sr} Hz for {os.path.basename(file_path)}...")
|
178 |
-
# Librosa works on numpy
|
179 |
-
audio_np = audio_tensor.numpy()
|
180 |
-
resampled_audio_np = librosa.resample(audio_np, orig_sr=orig_sr, target_sr=target_sr, res_type='kaiser_best') # Specify resampling type
|
181 |
-
audio_tensor = torch.from_numpy(resampled_audio_np).float()
|
182 |
-
current_sr = target_sr
|
183 |
-
logger.info(f"Resampled audio tensor shape: {audio_tensor.shape}")
|
184 |
-
|
185 |
-
# Ensure tensor is on the correct device
|
186 |
-
return audio_tensor.to(DEVICE), current_sr
|
187 |
-
|
188 |
-
except sf.SoundFileError as sf_err:
|
189 |
-
logger.error(f"SoundFileError loading {file_path}: {sf_err}", exc_info=True)
|
190 |
-
cleanup_file(file_path)
|
191 |
-
raise HTTPException(status_code=415, detail=f"Could not decode audio file: {os.path.basename(file_path)}. Unsupported format or corrupt file. Error: {sf_err}")
|
192 |
-
except Exception as e:
|
193 |
-
logger.error(f"Unexpected error loading/processing audio file {file_path} for AI: {e}", exc_info=True)
|
194 |
-
cleanup_file(file_path)
|
195 |
-
raise HTTPException(status_code=500, detail=f"Could not load or process audio file: {os.path.basename(file_path)}. Check server logs.")
|
196 |
-
|
197 |
-
|
198 |
-
def save_hf_audio(audio_data: Any, sampling_rate: int, output_format: str = "wav") -> str:
|
199 |
-
"""Saves audio data (Tensor or NumPy array) to a temporary file."""
|
200 |
-
if not AI_LIBS_AVAILABLE:
|
201 |
-
raise HTTPException(status_code=501, detail="AI Audio processing libraries not available.")
|
202 |
-
|
203 |
-
output_filename = f"ai_output_{uuid.uuid4().hex}.{output_format.lower()}"
|
204 |
-
output_path = os.path.join(TEMP_DIR, output_filename)
|
205 |
-
try:
|
206 |
-
logger.info(f"Saving AI processed audio to {output_path} (SR={sampling_rate}, format={output_format})")
|
207 |
-
|
208 |
-
# Convert tensor to numpy array if needed
|
209 |
-
if isinstance(audio_data, torch.Tensor):
|
210 |
-
logger.debug("Converting output tensor to NumPy array.")
|
211 |
-
# Ensure tensor is on CPU before converting to numpy
|
212 |
-
audio_np = audio_data.detach().cpu().numpy()
|
213 |
-
elif isinstance(audio_data, np.ndarray):
|
214 |
-
audio_np = audio_data
|
215 |
-
else:
|
216 |
-
raise TypeError(f"Unsupported audio data type for saving: {type(audio_data)}")
|
217 |
-
|
218 |
-
# Ensure data is float32
|
219 |
-
if audio_np.dtype != np.float32:
|
220 |
-
logger.warning(f"Output audio dtype is {audio_np.dtype}, converting to float32 for saving.")
|
221 |
-
audio_np = audio_np.astype(np.float32)
|
222 |
-
|
223 |
-
# Clip values to avoid potential issues with formats expecting [-1, 1]
|
224 |
-
audio_np = np.clip(audio_np, -1.0, 1.0)
|
225 |
-
|
226 |
-
# Ensure audio is 1D (mono) before saving with soundfile or pydub conversion
|
227 |
-
if audio_np.ndim > 1:
|
228 |
-
logger.warning(f"Output audio data has {audio_np.ndim} dimensions, attempting to flatten or take first dimension.")
|
229 |
-
# Try averaging channels if shape suggests stereo/multi-channel
|
230 |
-
channel_dim = np.argmin(audio_np.shape)
|
231 |
-
if audio_np.shape[channel_dim] > 1 and audio_np.shape[channel_dim] < 10:
|
232 |
-
audio_np = np.mean(audio_np, axis=channel_dim)
|
233 |
-
else: # Otherwise just flatten
|
234 |
-
audio_np = audio_np.flatten()
|
235 |
-
|
236 |
-
|
237 |
-
# Use soundfile (preferred for wav/flac)
|
238 |
-
if output_format.lower() in ['wav', 'flac']:
|
239 |
-
sf.write(output_path, audio_np, sampling_rate, format=output_format.upper())
|
240 |
-
else:
|
241 |
-
# For lossy formats, use pydub
|
242 |
-
logger.debug(f"Using pydub to export to lossy format: {output_format}")
|
243 |
-
# Scale float32 [-1, 1] to int16 for pydub
|
244 |
-
audio_int16 = (audio_np * 32767).astype(np.int16)
|
245 |
-
segment = AudioSegment(
|
246 |
-
audio_int16.tobytes(),
|
247 |
-
frame_rate=sampling_rate,
|
248 |
-
sample_width=audio_int16.dtype.itemsize,
|
249 |
-
channels=1 # Assuming mono after processing above
|
250 |
-
)
|
251 |
-
# Pydub might need explicit ffmpeg path in some envs
|
252 |
-
# AudioSegment.converter = "/path/to/ffmpeg" # Uncomment and set path if needed
|
253 |
-
segment.export(output_path, format=output_format)
|
254 |
-
|
255 |
-
logger.info(f"Successfully saved AI audio to {output_path}")
|
256 |
-
return output_path
|
257 |
-
except Exception as e:
|
258 |
-
logger.error(f"Error saving AI processed audio to {output_path}: {e}", exc_info=True)
|
259 |
-
cleanup_file(output_path) # Attempt cleanup on saving failure
|
260 |
-
raise HTTPException(status_code=500, detail=f"Failed to save processed audio to format '{output_format}'.")
|
261 |
-
|
262 |
|
263 |
-
|
264 |
-
def load_audio_pydub(file_path: str) -> AudioSegment:
|
265 |
"""Loads an audio file using pydub."""
|
266 |
-
|
267 |
-
raise HTTPException(status_code=500, detail=f"Internal error: Input audio file not found (pydub) at {file_path}")
|
268 |
try:
|
269 |
-
|
270 |
-
|
271 |
-
file_ext = os.path.splitext(file_path)[1][1:].lower()
|
272 |
-
if file_ext:
|
273 |
-
audio = AudioSegment.from_file(file_path, format=file_ext)
|
274 |
-
else:
|
275 |
-
audio = AudioSegment.from_file(file_path) # Let pydub detect
|
276 |
-
logger.info(f"Loaded audio using pydub from: {file_path}")
|
277 |
return audio
|
278 |
-
except CouldntDecodeError
|
279 |
-
logger.warning(f"
|
280 |
-
|
281 |
-
|
|
|
|
|
282 |
except Exception as e:
|
283 |
-
logger.error(f"Error loading audio file {file_path}
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
output_filename = f"
|
|
|
290 |
output_path = os.path.join(TEMP_DIR, output_filename)
|
291 |
try:
|
292 |
-
logger.info(f"Exporting audio
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
cleanup_file(output_path) # Cleanup if export failed
|
298 |
-
raise HTTPException(status_code=500, detail=f"Failed to export audio to format '{format}' using pydub.")
|
299 |
-
|
300 |
-
|
301 |
-
# --- Synchronous AI Inference Functions ---
|
302 |
-
|
303 |
-
def _run_enhancement_sync(model: Any, audio_tensor: torch.Tensor, sampling_rate: int) -> torch.Tensor:
|
304 |
-
"""Synchronous wrapper for SpeechBrain enhancement model inference."""
|
305 |
-
if not AI_LIBS_AVAILABLE or not model: raise ValueError("Enhancement model/libs not available")
|
306 |
-
try:
|
307 |
-
logger.info(f"Running enhancement (input shape: {audio_tensor.shape}, SR: {sampling_rate}, Device: {DEVICE})...")
|
308 |
-
model_device = next(model.parameters()).device # Check model's current device
|
309 |
-
if audio_tensor.device != model_device: audio_tensor = audio_tensor.to(model_device)
|
310 |
-
# Add batch dimension if model expects it (most do)
|
311 |
-
if audio_tensor.ndim == 1: audio_tensor = audio_tensor.unsqueeze(0)
|
312 |
-
|
313 |
-
with torch.no_grad():
|
314 |
-
# Check if model expects lengths parameter
|
315 |
-
enhance_method = getattr(model, "enhance_batch", getattr(model, "forward", None))
|
316 |
-
if "lengths" in enhance_method.__code__.co_varnames:
|
317 |
-
enhanced_tensor = enhance_method(audio_tensor, lengths=torch.tensor([audio_tensor.shape[-1]]).to(model_device))
|
318 |
-
else:
|
319 |
-
enhanced_tensor = enhance_method(audio_tensor)
|
320 |
-
|
321 |
-
|
322 |
-
# Remove batch dimension from output before returning, move back to CPU
|
323 |
-
enhanced_audio = enhanced_tensor.squeeze(0).cpu()
|
324 |
-
logger.info(f"Enhancement complete (output shape: {enhanced_audio.shape})")
|
325 |
-
return enhanced_audio
|
326 |
-
except Exception as e:
|
327 |
-
logger.error(f"Error during synchronous enhancement inference: {e}", exc_info=True)
|
328 |
-
raise # Re-raise to be caught by the async wrapper
|
329 |
-
|
330 |
-
def _run_separation_sync(model: Any, audio_tensor: torch.Tensor, sampling_rate: int) -> Dict[str, torch.Tensor]:
|
331 |
-
"""Synchronous wrapper for Demucs source separation model inference."""
|
332 |
-
if not AI_LIBS_AVAILABLE or not model: raise ValueError("Separation model/libs not available")
|
333 |
-
if not demucs: raise RuntimeError("Demucs library missing")
|
334 |
-
try:
|
335 |
-
logger.info(f"Running separation (input shape: {audio_tensor.shape}, SR: {sampling_rate}, Device: {DEVICE})...")
|
336 |
-
model_device = next(model.parameters()).device
|
337 |
-
if audio_tensor.device != model_device: audio_tensor = audio_tensor.to(model_device)
|
338 |
-
|
339 |
-
# Demucs expects audio as (batch, channels, samples)
|
340 |
-
if audio_tensor.ndim == 1: audio_tensor = audio_tensor.unsqueeze(0).unsqueeze(0) # (1, 1, N)
|
341 |
-
elif audio_tensor.ndim == 2: audio_tensor = audio_tensor.unsqueeze(1) # (B, 1, N)
|
342 |
-
|
343 |
-
# Repeat channel if model expects stereo but input is mono
|
344 |
-
if audio_tensor.shape[1] != model.audio_channels:
|
345 |
-
if audio_tensor.shape[1] == 1:
|
346 |
-
logger.info(f"Model expects {model.audio_channels} channels, input is mono. Repeating channel.")
|
347 |
-
audio_tensor = audio_tensor.repeat(1, model.audio_channels, 1)
|
348 |
-
else:
|
349 |
-
raise ValueError(f"Input channels ({audio_tensor.shape[1]}) mismatch model ({model.audio_channels})")
|
350 |
-
|
351 |
-
logger.debug(f"Input tensor shape for Demucs: {audio_tensor.shape}")
|
352 |
-
|
353 |
-
with torch.no_grad():
|
354 |
-
# Use demucs.apply.apply_model for handling chunking etc.
|
355 |
-
# Requires input shape (channels, samples) - process first batch item
|
356 |
-
audio_to_process = audio_tensor.squeeze(0)
|
357 |
-
# Note: shifts=1, split=True are common defaults for quality
|
358 |
-
out = demucs.apply.apply_model(model, audio_to_process, device=model_device, shifts=1, split=True, overlap=0.25, progress=False) # Disable progress bar in logs
|
359 |
-
# Output shape (stems, channels, samples)
|
360 |
-
|
361 |
-
logger.debug(f"Raw separated sources tensor shape: {out.shape}")
|
362 |
-
|
363 |
-
# Map stems based on the model's sources list
|
364 |
-
stem_map = {name: out[i] for i, name in enumerate(model.sources)}
|
365 |
-
|
366 |
-
# Convert back to mono for simplicity (average channels) and move to CPU
|
367 |
-
output_stems = {}
|
368 |
-
for name, data in stem_map.items():
|
369 |
-
# Average channels, detach, move to CPU
|
370 |
-
output_stems[name] = data.mean(dim=0).detach().cpu()
|
371 |
-
|
372 |
-
logger.info(f"Separation complete. Found stems: {list(output_stems.keys())}")
|
373 |
-
return output_stems
|
374 |
-
|
375 |
-
except Exception as e:
|
376 |
-
logger.error(f"Error during synchronous separation inference: {e}", exc_info=True)
|
377 |
-
raise
|
378 |
-
|
379 |
-
|
380 |
-
# --- Model Loading Function (Enhanced Logging) ---
|
381 |
-
def load_hf_models():
|
382 |
-
"""Loads AI models at startup using correct libraries."""
|
383 |
-
logger_load = logging.getLogger("ModelLoader") # Use specific logger
|
384 |
-
logger_load.setLevel(logging.INFO)
|
385 |
-
# Ensure handler is attached if logger is newly created
|
386 |
-
if not logger_load.handlers and ch: logger_load.addHandler(ch)
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
logger_load.error("Core AI libraries not available. Cannot load AI models.")
|
391 |
-
return
|
392 |
-
|
393 |
-
load_success_flags = {"enhancement": False, "separation": False}
|
394 |
-
|
395 |
-
# --- Load Enhancement Model ---
|
396 |
-
enhancement_model_hparams = "speechbrain/sepformer-whamr-enhancement"
|
397 |
-
logger_load.info(f"--- Attempting to load Enhancement Model: {enhancement_model_hparams} ---")
|
398 |
-
try:
|
399 |
-
logger_load.info(f"Attempting load on device: {DEVICE}")
|
400 |
-
# Consider adding savedir if cache issues arise in HF Spaces
|
401 |
-
# savedir_sb = os.path.join(TEMP_DIR, "speechbrain_models")
|
402 |
-
# os.makedirs(savedir_sb, exist_ok=True)
|
403 |
-
enhancer = speechbrain.pretrained.SepformerEnhancement.from_hparams(
|
404 |
-
source=enhancement_model_hparams,
|
405 |
-
# savedir=savedir_sb,
|
406 |
-
run_opts={"device": DEVICE}
|
407 |
-
)
|
408 |
-
model_device = next(enhancer.parameters()).device
|
409 |
-
enhancement_models[ENHANCEMENT_MODEL_KEY] = enhancer
|
410 |
-
logger_load.info(f"SUCCESS: Enhancement model '{ENHANCEMENT_MODEL_KEY}' loaded successfully on {model_device}.")
|
411 |
-
load_success_flags["enhancement"] = True
|
412 |
-
except Exception as e:
|
413 |
-
logger_load.error(f"FAILED to load enhancement model '{enhancement_model_hparams}'. Error:", exc_info=False)
|
414 |
-
logger_load.error(f"Traceback: {traceback.format_exc()}") # Log full traceback separately
|
415 |
-
logger_load.warning("Enhancement features will be unavailable.")
|
416 |
-
|
417 |
-
|
418 |
-
# --- Load Separation Model ---
|
419 |
-
separation_model_name = SEPARATION_MODEL_KEY # e.g., "htdemucs"
|
420 |
-
logger_load.info(f"--- Attempting to load Separation Model: {separation_model_name} ---")
|
421 |
-
try:
|
422 |
-
logger_load.info(f"Attempting load on device: {DEVICE}")
|
423 |
-
# This automatically handles downloading the model checkpoint via demucs package
|
424 |
-
separator = demucs.apply.load_model(name=separation_model_name, device=DEVICE)
|
425 |
-
model_device = next(separator.parameters()).device
|
426 |
-
separation_models[SEPARATION_MODEL_KEY] = separator
|
427 |
-
logger_load.info(f"SUCCESS: Separation model '{SEPARATION_MODEL_KEY}' loaded successfully on {model_device}.")
|
428 |
-
logger_load.info(f"Separation model available sources: {separator.sources}")
|
429 |
-
load_success_flags["separation"] = True
|
430 |
except Exception as e:
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
logger_load.warning("Separation features will be unavailable.")
|
435 |
|
436 |
-
logger_load.info(f"--- Model loading attempts finished ---")
|
437 |
-
logger_load.info(f"Enhancement Model Loaded: {load_success_flags['enhancement']}")
|
438 |
-
logger_load.info(f"Separation Model Loaded: {load_success_flags['separation']}")
|
439 |
-
|
440 |
-
|
441 |
-
# --- FastAPI App ---
|
442 |
-
app = FastAPI(
|
443 |
-
title="AI Audio Editor API",
|
444 |
-
description="API for basic audio editing and AI-powered enhancement & separation. Requires FFmpeg and specific AI libraries.",
|
445 |
-
version="2.1.2", # Incremented version
|
446 |
-
)
|
447 |
-
|
448 |
-
@app.on_event("startup")
|
449 |
-
async def startup_event():
|
450 |
-
# Use the init logger for startup messages
|
451 |
-
logger_init.info("--- FastAPI Application Startup ---")
|
452 |
-
if AI_LIBS_AVAILABLE:
|
453 |
-
logger_init.info("AI Libraries imported successfully. Loading models in background thread...")
|
454 |
-
# Run blocking model load in thread
|
455 |
-
await asyncio.to_thread(load_hf_models)
|
456 |
-
logger_init.info("Background model loading task finished (check ModelLoader logs above for details).")
|
457 |
-
else:
|
458 |
-
logger_init.error("AI Libraries failed to import during init. AI features will be disabled.")
|
459 |
-
logger_init.info("--- Startup sequence complete ---")
|
460 |
|
461 |
# --- API Endpoints ---
|
462 |
|
463 |
@app.get("/", tags=["General"])
|
464 |
def read_root():
|
465 |
-
"""Root endpoint providing a welcome message and status
|
466 |
-
features = ["/trim", "/concat", "/volume", "/convert"]
|
467 |
-
|
468 |
-
|
469 |
-
if AI_LIBS_AVAILABLE:
|
470 |
-
if enhancement_models:
|
471 |
-
ai_features_status[ENHANCEMENT_MODEL_KEY] = "Loaded"
|
472 |
-
else:
|
473 |
-
ai_features_status[ENHANCEMENT_MODEL_KEY] = "Failed to load (check startup logs)"
|
474 |
-
|
475 |
-
if separation_models:
|
476 |
-
model = separation_models.get(SEPARATION_MODEL_KEY)
|
477 |
-
sources_str = ', '.join(model.sources) if model else 'N/A'
|
478 |
-
ai_features_status[SEPARATION_MODEL_KEY] = f"Loaded (Sources: {sources_str})"
|
479 |
-
else:
|
480 |
-
ai_features_status[SEPARATION_MODEL_KEY] = "Failed to load (check startup logs)"
|
481 |
else:
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
return {
|
486 |
-
"message": "Welcome to the
|
487 |
-
"
|
488 |
-
"
|
489 |
-
"basic_endpoints": features,
|
490 |
-
"notes": "Requires FFmpeg. AI features require successful model loading at startup."
|
491 |
}
|
492 |
|
|
|
|
|
|
|
493 |
|
494 |
-
|
495 |
-
|
496 |
-
@app.post("/trim", tags=["Basic Editing"])
|
497 |
async def trim_audio(
|
498 |
background_tasks: BackgroundTasks,
|
499 |
file: UploadFile = File(..., description="Audio file to trim."),
|
500 |
-
start_ms: int = Form(...,
|
501 |
-
end_ms: int = Form(...,
|
502 |
):
|
503 |
-
"""Trims an audio file
|
504 |
-
if end_ms <= start_ms:
|
505 |
-
raise HTTPException(status_code=422, detail="
|
506 |
|
507 |
logger.info(f"Trim request: file='{file.filename}', start={start_ms}ms, end={end_ms}ms")
|
508 |
-
input_path = await save_upload_file(file
|
509 |
-
|
510 |
-
background_tasks.add_task(
|
511 |
-
output_path = None # Define before try block
|
512 |
|
|
|
513 |
try:
|
514 |
-
audio =
|
515 |
trimmed_audio = audio[start_ms:end_ms]
|
516 |
logger.info(f"Audio trimmed to {len(trimmed_audio)}ms")
|
517 |
|
518 |
-
|
519 |
-
original_format
|
520 |
-
# Use mp3 as default only if no extension or if it's 'tmp' etc.
|
521 |
-
if not original_format or len(original_format) > 5: # Basic check for valid extension length
|
522 |
-
original_format = "mp3"
|
523 |
-
logger.warning(f"Using default export format 'mp3' for input '{file.filename}'")
|
524 |
-
|
525 |
-
output_path = export_audio_pydub(trimmed_audio, original_format) # Can raise HTTPException
|
526 |
-
background_tasks.add_task(cleanup_file, output_path) # Schedule output cleanup
|
527 |
|
528 |
-
|
529 |
-
|
530 |
|
531 |
return FileResponse(
|
532 |
path=output_path,
|
533 |
-
media_type=f"audio/{original_format}",
|
534 |
-
filename=
|
535 |
)
|
536 |
-
except HTTPException as http_exc:
|
537 |
-
# If load/export raised HTTPException, re-raise it
|
538 |
-
# Cleanup might have already been scheduled, background tasks handle errors
|
539 |
-
logger.error(f"HTTP Exception during trim: {http_exc.detail}")
|
540 |
-
if output_path: cleanup_file(output_path) # Try immediate cleanup if output exists
|
541 |
-
raise http_exc
|
542 |
except Exception as e:
|
543 |
-
|
544 |
-
|
545 |
-
if output_path:
|
546 |
-
|
|
|
|
|
547 |
|
548 |
|
549 |
-
@app.post("/concat", tags=["
|
550 |
async def concatenate_audio(
|
551 |
background_tasks: BackgroundTasks,
|
552 |
files: List[UploadFile] = File(..., description="Two or more audio files to join in order."),
|
553 |
output_format: str = Form("mp3", description="Desired output format (e.g., 'mp3', 'wav', 'ogg').")
|
554 |
):
|
555 |
-
"""Concatenates two or more audio files sequentially
|
556 |
if len(files) < 2:
|
557 |
raise HTTPException(status_code=422, detail="Please upload at least two files to concatenate.")
|
558 |
|
559 |
logger.info(f"Concatenate request: {len(files)} files, output_format='{output_format}'")
|
560 |
-
|
561 |
-
|
|
|
562 |
|
563 |
try:
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
except HTTPException as load_exc:
|
584 |
-
# Log error but continue trying to load other files if possible
|
585 |
-
logger.error(f"Failed to load file '{file.filename}' for concatenation: {load_exc.detail}. Skipping this file.")
|
586 |
-
except Exception as load_exc:
|
587 |
-
logger.error(f"Unexpected error loading file '{file.filename}' for concatenation: {load_exc}. Skipping this file.", exc_info=True)
|
588 |
-
|
589 |
-
|
590 |
-
if combined_audio is None:
|
591 |
-
raise HTTPException(status_code=400, detail="No valid audio files could be loaded and combined.")
|
592 |
-
|
593 |
-
logger.info(f"Final concatenated audio length: {len(combined_audio)}ms")
|
594 |
-
|
595 |
-
output_path = export_audio_pydub(combined_audio, output_format) # Can raise HTTPException
|
596 |
-
background_tasks.add_task(cleanup_file, output_path) # Schedule output cleanup
|
597 |
-
|
598 |
-
# Determine a reasonable output filename
|
599 |
-
first_valid_filename = files[0].filename if files and files[0] else "audio"
|
600 |
-
first_filename_base = os.path.splitext(first_valid_filename)[0]
|
601 |
-
output_filename = f"concat_{first_filename_base}_and_{len(files)-1}_others.{output_format}"
|
602 |
|
603 |
return FileResponse(
|
604 |
path=output_path,
|
605 |
media_type=f"audio/{output_format}",
|
606 |
-
filename=
|
607 |
)
|
608 |
-
except HTTPException as http_exc:
|
609 |
-
# If load/export raised HTTPException, re-raise it
|
610 |
-
logger.error(f"HTTP Exception during concat: {http_exc.detail}")
|
611 |
-
# Cleanup for output path, inputs are handled by background tasks
|
612 |
-
if output_path: cleanup_file(output_path)
|
613 |
-
raise http_exc
|
614 |
except Exception as e:
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
|
|
619 |
|
620 |
|
621 |
-
@app.post("/volume", tags=["
|
622 |
async def change_volume(
|
623 |
background_tasks: BackgroundTasks,
|
624 |
file: UploadFile = File(..., description="Audio file to adjust volume for."),
|
625 |
-
change_db: float = Form(..., description="Volume change in decibels (dB).
|
626 |
):
|
627 |
-
"""Adjusts
|
628 |
logger.info(f"Volume request: file='{file.filename}', change_db={change_db}dB")
|
629 |
-
input_path = await save_upload_file(file
|
630 |
-
|
|
|
631 |
output_path = None
|
|
|
632 |
try:
|
633 |
-
audio =
|
634 |
-
# Check for potential silence before applying gain
|
635 |
-
if audio.dBFS == -float('inf'):
|
636 |
-
logger.warning(f"Input file '{file.filename}' appears to be silent. Applying volume change may have no effect.")
|
637 |
adjusted_audio = audio + change_db
|
638 |
logger.info(f"Volume adjusted by {change_db}dB.")
|
639 |
|
640 |
-
original_format = os.path.splitext(file.filename)[1][1:].lower()
|
641 |
-
if
|
642 |
-
|
643 |
-
output_path = export_audio_pydub(adjusted_audio, original_format)
|
644 |
-
background_tasks.add_task(cleanup_file, output_path)
|
645 |
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
|
650 |
return FileResponse(
|
651 |
path=output_path,
|
652 |
media_type=f"audio/{original_format}",
|
653 |
-
filename=
|
654 |
)
|
655 |
-
except HTTPException as http_exc:
|
656 |
-
logger.error(f"HTTP Exception during volume change: {http_exc.detail}")
|
657 |
-
if output_path: cleanup_file(output_path)
|
658 |
-
raise http_exc
|
659 |
except Exception as e:
|
660 |
-
logger.error(f"
|
661 |
-
if output_path:
|
662 |
-
|
|
|
663 |
|
664 |
|
665 |
-
@app.post("/convert", tags=["
|
666 |
async def convert_format(
|
667 |
background_tasks: BackgroundTasks,
|
668 |
file: UploadFile = File(..., description="Audio file to convert."),
|
669 |
output_format: str = Form(..., description="Target audio format (e.g., 'mp3', 'wav', 'ogg', 'flac').")
|
670 |
):
|
671 |
-
"""Converts
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
background_tasks.add_task(
|
681 |
output_path = None
|
682 |
-
try:
|
683 |
-
# Load using pydub, which handles many input formats
|
684 |
-
audio = load_audio_pydub(input_path)
|
685 |
-
logger.info(f"Successfully loaded '{file.filename}' for conversion.")
|
686 |
-
|
687 |
-
# Export using pydub
|
688 |
-
output_path = export_audio_pydub(audio, output_format_lower)
|
689 |
-
background_tasks.add_task(cleanup_file, output_path)
|
690 |
-
logger.info(f"Successfully exported to {output_format_lower}")
|
691 |
|
692 |
-
|
|
|
693 |
filename_base = os.path.splitext(file.filename)[0]
|
694 |
-
|
695 |
|
696 |
-
|
697 |
-
|
698 |
-
'mp3': 'audio/mpeg', 'wav': 'audio/wav', 'ogg': 'audio/ogg',
|
699 |
-
'flac': 'audio/flac', 'aac': 'audio/aac', 'm4a': 'audio/mp4', # m4a often uses mp4 container
|
700 |
-
'opus': 'audio/opus', 'wma':'audio/x-ms-wma', 'aiff':'audio/aiff'
|
701 |
-
}
|
702 |
-
media_type = media_type_map.get(output_format_lower, 'application/octet-stream') # Default binary if unknown
|
703 |
|
704 |
return FileResponse(
|
705 |
path=output_path,
|
706 |
-
media_type=
|
707 |
-
filename=
|
708 |
)
|
709 |
-
except HTTPException as http_exc:
|
710 |
-
logger.error(f"HTTP Exception during conversion: {http_exc.detail}")
|
711 |
-
if output_path: cleanup_file(output_path)
|
712 |
-
raise http_exc
|
713 |
except Exception as e:
|
714 |
-
logger.error(f"
|
715 |
-
if output_path:
|
716 |
-
|
|
|
717 |
|
718 |
|
719 |
-
# --- AI
|
720 |
|
721 |
-
@app.post("/
|
722 |
-
async def
|
723 |
background_tasks: BackgroundTasks,
|
724 |
-
file: UploadFile = File(..., description="
|
725 |
-
|
726 |
-
|
727 |
-
output_format: str = Form("wav", description="Output format (wav, flac recommended).")
|
728 |
):
|
729 |
-
"""
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
if
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
loaded_model = enhancement_models[actual_model_key]
|
738 |
-
|
739 |
-
logger.info(f"Enhance request: file='{file.filename}', model='{actual_model_key}', format='{output_format}'")
|
740 |
-
input_path = await save_upload_file(file, prefix="enhance_in_")
|
741 |
-
background_tasks.add_task(cleanup_file, input_path)
|
742 |
-
output_path = None
|
743 |
-
try:
|
744 |
-
# Load audio as tensor, ensure correct SR (16kHz)
|
745 |
-
audio_tensor, current_sr = load_audio_for_hf(input_path, target_sr=ENHANCEMENT_SR)
|
746 |
|
747 |
-
|
748 |
-
enhanced_audio_tensor = await asyncio.to_thread(
|
749 |
-
_run_enhancement_sync, loaded_model, audio_tensor, current_sr
|
750 |
-
)
|
751 |
-
logger.info("Enhancement task completed.")
|
752 |
-
|
753 |
-
# Save the result (tensor output from enhancer at 16kHz)
|
754 |
-
output_path = save_hf_audio(enhanced_audio_tensor, ENHANCEMENT_SR, output_format)
|
755 |
-
background_tasks.add_task(cleanup_file, output_path)
|
756 |
-
|
757 |
-
output_filename=f"enhanced_{os.path.splitext(file.filename)[0]}.{output_format}"
|
758 |
-
media_type = f"audio/{output_format}" # Basic media type
|
759 |
-
return FileResponse(path=output_path, media_type=media_type, filename=output_filename)
|
760 |
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
except Exception as e:
|
766 |
-
logger.error(f"Unexpected error during enhancement operation: {e}", exc_info=True)
|
767 |
-
if output_path: cleanup_file(output_path)
|
768 |
-
raise HTTPException(status_code=500, detail=f"An unexpected server error occurred during enhancement: {str(e)}")
|
769 |
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
background_tasks: BackgroundTasks,
|
774 |
-
file: UploadFile = File(..., description="Music audio file to separate into stems."),
|
775 |
-
model_key: Optional[str] = Form(SEPARATION_MODEL_KEY, description="Internal key of the separation model to use (defaults to primary)."),
|
776 |
-
stems: List[str] = Form(..., description="List of stems to extract (e.g., 'vocals', 'drums', 'bass', 'other')."),
|
777 |
-
output_format: str = Form("wav", description="Output format for the stems (wav, flac recommended).")
|
778 |
-
):
|
779 |
-
"""Separates music into stems using a pre-loaded Demucs model. Returns a ZIP archive."""
|
780 |
-
if not AI_LIBS_AVAILABLE: raise HTTPException(status_code=501, detail="AI processing libraries not available.")
|
781 |
-
actual_model_key = model_key or SEPARATION_MODEL_KEY
|
782 |
-
if actual_model_key not in separation_models:
|
783 |
-
logger.error(f"Separation model key '{actual_model_key}' requested but model not loaded.")
|
784 |
-
raise HTTPException(status_code=503, detail=f"Separation model '{actual_model_key}' is not loaded or available. Check server startup logs.")
|
785 |
-
|
786 |
-
loaded_model = separation_models[actual_model_key]
|
787 |
-
valid_stems = set(loaded_model.sources)
|
788 |
-
requested_stems = set(s.lower() for s in stems)
|
789 |
-
|
790 |
-
# Check if *any* requested stem is valid
|
791 |
-
if not requested_stems:
|
792 |
-
raise HTTPException(status_code=422, detail="No stems requested for separation.")
|
793 |
-
# Check if *all* requested stems are valid for this model
|
794 |
-
invalid_stems = requested_stems - valid_stems
|
795 |
-
if invalid_stems:
|
796 |
-
raise HTTPException(status_code=422, detail=f"Invalid stem(s) requested: {', '.join(invalid_stems)}. Model '{actual_model_key}' provides: {', '.join(valid_stems)}")
|
797 |
-
|
798 |
-
logger.info(f"Separate request: file='{file.filename}', model='{actual_model_key}', stems={requested_stems}, format='{output_format}'")
|
799 |
-
input_path = await save_upload_file(file, prefix="separate_in_")
|
800 |
-
background_tasks.add_task(cleanup_file, input_path)
|
801 |
-
stem_output_paths: Dict[str, str] = {} # Store paths of successfully saved stems
|
802 |
-
zip_buffer = io.BytesIO(); zipf = None # Initialize zip buffer and file object
|
803 |
|
804 |
try:
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
|
|
811 |
)
|
812 |
-
logger.info("
|
813 |
-
|
814 |
-
#
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
iter([zip_buffer.getvalue()]), # StreamingResponse needs an iterator
|
857 |
-
media_type="application/zip",
|
858 |
-
headers={'Content-Disposition': f'attachment; filename="{zip_filename}"'}
|
859 |
)
|
860 |
-
|
861 |
-
logger.error(f"HTTP Exception during separation: {http_exc.detail}")
|
862 |
-
if zipf: zipf.close() # Ensure zipfile is closed
|
863 |
-
if zip_buffer: zip_buffer.close()
|
864 |
-
for path in stem_output_paths.values(): cleanup_file(path) # Cleanup successful stems
|
865 |
-
raise http_exc
|
866 |
except Exception as e:
|
867 |
-
logger.error(f"
|
868 |
-
if
|
869 |
-
|
870 |
-
|
871 |
-
raise HTTPException(status_code=500, detail=f"An unexpected
|
872 |
-
finally:
|
873 |
-
# Ensure buffer is closed if not already done
|
874 |
-
if zip_buffer and not zip_buffer.closed:
|
875 |
-
zip_buffer.close()
|
876 |
|
877 |
|
878 |
# --- How to Run ---
|
879 |
-
# 1.
|
880 |
# 2. Save this code as `app.py`.
|
881 |
-
# 3. Create `requirements.txt` (
|
882 |
-
# 4. Install dependencies: `pip install -r requirements.txt` (
|
883 |
-
# 5. Run the FastAPI server: `uvicorn app:app --
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
884 |
#
|
885 |
-
#
|
886 |
-
# - AI models require SIGNIFICANT RAM (often 8GB+) and CPU/GPU. Inference can be SLOW (minutes). Free HF Spaces might time out or lack resources.
|
887 |
-
# - First run downloads models (can take a long time/lots of disk space).
|
888 |
-
# - Ensure model names (e.g., "htdemucs") are correct.
|
889 |
-
# - MONITOR STARTUP LOGS carefully for model loading success/failure. Errors here will cause 503 errors later.
|
|
|
|
|
1 |
import os
|
2 |
import uuid
|
3 |
import tempfile
|
4 |
import logging
|
5 |
+
import shutil
|
6 |
+
from typing import List, Optional, Literal
|
|
|
7 |
|
8 |
+
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks
|
9 |
+
from fastapi.responses import FileResponse # JSONResponse removed as not used now
|
|
|
|
|
|
|
|
|
10 |
from pydub import AudioSegment
|
11 |
from pydub.exceptions import CouldntDecodeError
|
12 |
|
13 |
+
# --- Spleeter (AI Vocal Removal) Imports ---
|
14 |
+
# Wrap in try-except to handle potential import errors gracefully
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
+
from spleeter.separator import Separator
|
17 |
+
from spleeter.utils import logging as spleeter_logging
|
18 |
+
spleeter_available = True
|
19 |
+
# Optional: Configure Spleeter logging level (e.g., ERROR to reduce noise)
|
20 |
+
# spleeter_logging.set_level(spleeter_logging.ERROR)
|
21 |
+
except ImportError:
|
22 |
+
spleeter_available = False
|
23 |
+
Separator = None # Define Separator as None if import fails
|
24 |
+
logging.warning("Spleeter library not found or failed to import.")
|
25 |
+
logging.warning("AI Vocal Removal endpoint (/ai/remove-vocals) will be disabled.")
|
26 |
+
logging.warning("Install spleeter: pip install spleeter")
|
27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# --- Configuration & Setup ---
|
30 |
TEMP_DIR = tempfile.gettempdir()
|
31 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Configure logging
|
34 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
35 |
logger = logging.getLogger(__name__)
|
36 |
|
37 |
+
# --- Global Spleeter Separator Initialization ---
|
38 |
+
# Load the model once on startup for better request performance.
|
39 |
+
# This increases startup time and initial memory usage significantly.
|
40 |
+
# Choose the model: 2stems (vocals/accompaniment), 4stems (v/drums/bass/other), 5stems (v/d/b/piano/other)
|
41 |
+
# Using 'spleeter:2stems' - downloads model on first use if not cached.
|
42 |
+
spleeter_separator: Optional[Separator] = None
|
43 |
+
if spleeter_available:
|
44 |
+
try:
|
45 |
+
logger.info("Initializing Spleeter Separator (Model: spleeter:2stems)... This may download model files.")
|
46 |
+
# MWF = Multi-channel Wiener Filtering (can improve quality but slower)
|
47 |
+
spleeter_separator = Separator('spleeter:2stems', mwf=False)
|
48 |
+
logger.info("Spleeter Separator initialized successfully.")
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"FATAL: Failed to initialize Spleeter Separator: {e}", exc_info=True)
|
51 |
+
logger.error("AI Vocal Removal endpoint will likely fail.")
|
52 |
+
spleeter_separator = None # Ensure it's None if init failed
|
|
|
|
|
|
|
53 |
|
54 |
+
# --- FastAPI App Initialization ---
|
55 |
+
app = FastAPI(
|
56 |
+
title="Advanced Audio Editor API",
|
57 |
+
description="API for audio editing (trim, concat, volume, convert) and AI Vocal Removal (using Spleeter). Requires FFmpeg.",
|
58 |
+
version="2.0.0",
|
59 |
+
)
|
60 |
|
61 |
+
# --- Helper Functions (Mostly unchanged, added directory cleanup) ---
|
62 |
|
63 |
+
def cleanup_path(path: str):
|
64 |
+
"""Safely remove a file or directory."""
|
65 |
try:
|
66 |
+
if not path or not os.path.exists(path):
|
67 |
+
# logger.debug(f"Cleanup skipped: Path '{path}' does not exist.")
|
68 |
+
return
|
69 |
+
|
70 |
+
if os.path.isfile(path):
|
71 |
+
os.remove(path)
|
72 |
+
logger.info(f"Cleaned up temporary file: {path}")
|
73 |
+
elif os.path.isdir(path):
|
74 |
+
shutil.rmtree(path)
|
75 |
+
logger.info(f"Cleaned up temporary directory: {path}")
|
76 |
+
else:
|
77 |
+
logger.warning(f"Cleanup attempted on non-file/dir path: {path}")
|
78 |
+
|
79 |
except Exception as e:
|
80 |
+
logger.error(f"Error cleaning up path {path}: {e}", exc_info=True)
|
|
|
81 |
|
82 |
+
async def save_upload_file(upload_file: UploadFile) -> str:
|
83 |
"""Saves an uploaded file to a temporary location and returns the path."""
|
84 |
+
file_extension = os.path.splitext(upload_file.filename)[1] or '.tmp'
|
85 |
+
# Use a subdirectory within TEMP_DIR for better organization
|
86 |
+
request_temp_dir = os.path.join(TEMP_DIR, f"audio_api_upload_{uuid.uuid4().hex}")
|
87 |
+
os.makedirs(request_temp_dir, exist_ok=True)
|
88 |
+
temp_file_path = os.path.join(request_temp_dir, f"input{file_extension}")
|
|
|
|
|
89 |
|
90 |
try:
|
|
|
91 |
with open(temp_file_path, "wb") as buffer:
|
92 |
+
while content := await upload_file.read(1024 * 1024):
|
93 |
+
buffer.write(content)
|
94 |
+
logger.info(f"Saved uploaded file '{upload_file.filename}' to temp path: {temp_file_path}")
|
|
|
95 |
return temp_file_path
|
96 |
except Exception as e:
|
97 |
+
logger.error(f"Failed to save uploaded file {upload_file.filename}: {e}", exc_info=True)
|
98 |
+
cleanup_path(request_temp_dir) # Cleanup directory if save fails
|
99 |
raise HTTPException(status_code=500, detail=f"Could not save uploaded file: {upload_file.filename}")
|
100 |
finally:
|
101 |
+
await upload_file.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
def load_audio(file_path: str) -> AudioSegment:
|
|
|
104 |
"""Loads an audio file using pydub."""
|
105 |
+
# (Implementation unchanged)
|
|
|
106 |
try:
|
107 |
+
audio = AudioSegment.from_file(file_path)
|
108 |
+
logger.info(f"Loaded audio from: {file_path} (Duration: {len(audio)}ms)")
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
return audio
|
110 |
+
except CouldntDecodeError:
|
111 |
+
logger.warning(f"pydub couldn't decode file: {file_path}. Unsupported format or corrupted?")
|
112 |
+
raise HTTPException(status_code=415, detail=f"Unsupported audio format or corrupted file: {os.path.basename(file_path)}")
|
113 |
+
except FileNotFoundError:
|
114 |
+
logger.error(f"Audio file not found after saving: {file_path}")
|
115 |
+
raise HTTPException(status_code=500, detail="Internal error: Audio file disappeared.")
|
116 |
except Exception as e:
|
117 |
+
logger.error(f"Error loading audio file {file_path}: {e}", exc_info=True)
|
118 |
+
raise HTTPException(status_code=500, detail=f"Error processing audio file: {os.path.basename(file_path)}")
|
119 |
+
|
120 |
+
def export_audio(audio: AudioSegment, desired_format: str, base_filename: str = "edited_audio") -> str:
|
121 |
+
"""Exports an AudioSegment to a temporary file with specified format and returns the path."""
|
122 |
+
# (Slight modification to allow base filename)
|
123 |
+
output_filename = f"{base_filename}_{uuid.uuid4().hex}.{desired_format.lower()}"
|
124 |
+
# Place export in main TEMP_DIR, not necessarily the upload sub-dir
|
125 |
output_path = os.path.join(TEMP_DIR, output_filename)
|
126 |
try:
|
127 |
+
logger.info(f"Exporting audio to format '{desired_format}' at {output_path}")
|
128 |
+
# Add bitrate argument for common formats if desired (e.g., "192k" for mp3)
|
129 |
+
export_params = {}
|
130 |
+
if desired_format.lower() == "mp3":
|
131 |
+
export_params['bitrate'] = "192k" # Example bitrate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
audio.export(output_path, format=desired_format.lower(), **export_params)
|
134 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
except Exception as e:
|
136 |
+
logger.error(f"Error exporting audio to format {desired_format}: {e}", exc_info=True)
|
137 |
+
cleanup_path(output_path)
|
138 |
+
raise HTTPException(status_code=500, detail=f"Failed to export audio to format '{desired_format}'.")
|
|
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
# --- API Endpoints ---
|
142 |
|
143 |
@app.get("/", tags=["General"])
|
144 |
def read_root():
|
145 |
+
"""Root endpoint providing a welcome message and feature status."""
|
146 |
+
features = ["Trim (/trim)", "Concatenate (/concat)", "Volume (/volume)", "Convert (/convert)"]
|
147 |
+
if spleeter_separator:
|
148 |
+
features.append("AI Vocal Removal (/ai/remove-vocals)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
else:
|
150 |
+
features.append("AI Vocal Removal (Disabled - Spleeter not available)")
|
|
|
|
|
151 |
return {
|
152 |
+
"message": "Welcome to the Advanced Audio Editor API.",
|
153 |
+
"available_features": features,
|
154 |
+
"important": "AI Vocal Removal is computationally intensive and may take significant time."
|
|
|
|
|
155 |
}
|
156 |
|
157 |
+
# --- Existing Endpoints (Trim, Concat, Volume, Convert) ---
|
158 |
+
# Minor changes: Use updated cleanup_path, ensure input cleanup uses the directory
|
159 |
+
# Use updated export_audio
|
160 |
|
161 |
+
@app.post("/trim", tags=["Editing - Pydub"])
|
|
|
|
|
162 |
async def trim_audio(
|
163 |
background_tasks: BackgroundTasks,
|
164 |
file: UploadFile = File(..., description="Audio file to trim."),
|
165 |
+
start_ms: int = Form(..., description="Start time in milliseconds."),
|
166 |
+
end_ms: int = Form(..., description="End time in milliseconds.")
|
167 |
):
|
168 |
+
"""Trims an audio file (uses pydub)."""
|
169 |
+
if start_ms < 0 or end_ms <= start_ms:
|
170 |
+
raise HTTPException(status_code=422, detail="Invalid start/end times.")
|
171 |
|
172 |
logger.info(f"Trim request: file='{file.filename}', start={start_ms}ms, end={end_ms}ms")
|
173 |
+
input_path = await save_upload_file(file)
|
174 |
+
input_dir = os.path.dirname(input_path)
|
175 |
+
background_tasks.add_task(cleanup_path, input_dir) # Schedule input dir cleanup
|
|
|
176 |
|
177 |
+
output_path = None # Define output_path before try block
|
178 |
try:
|
179 |
+
audio = load_audio(input_path)
|
180 |
trimmed_audio = audio[start_ms:end_ms]
|
181 |
logger.info(f"Audio trimmed to {len(trimmed_audio)}ms")
|
182 |
|
183 |
+
original_format = os.path.splitext(file.filename)[1][1:].lower() or "mp3"
|
184 |
+
if original_format in ["tmp", ""]: original_format = "mp3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
output_path = export_audio(trimmed_audio, original_format, base_filename=f"trimmed_{os.path.splitext(file.filename)[0]}")
|
187 |
+
background_tasks.add_task(cleanup_path, output_path) # Schedule output cleanup
|
188 |
|
189 |
return FileResponse(
|
190 |
path=output_path,
|
191 |
+
media_type=f"audio/{original_format}",
|
192 |
+
filename=f"trimmed_{file.filename}"
|
193 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
except Exception as e:
|
195 |
+
logger.error(f"Error during trim operation: {e}", exc_info=True)
|
196 |
+
# Ensure immediate cleanup on error if possible
|
197 |
+
if output_path: cleanup_path(output_path)
|
198 |
+
# Input dir cleanup is handled by background task unless error is critical before scheduling
|
199 |
+
if isinstance(e, HTTPException): raise e
|
200 |
+
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during trimming: {str(e)}")
|
201 |
|
202 |
|
203 |
+
@app.post("/concat", tags=["Editing - Pydub"])
|
204 |
async def concatenate_audio(
|
205 |
background_tasks: BackgroundTasks,
|
206 |
files: List[UploadFile] = File(..., description="Two or more audio files to join in order."),
|
207 |
output_format: str = Form("mp3", description="Desired output format (e.g., 'mp3', 'wav', 'ogg').")
|
208 |
):
|
209 |
+
"""Concatenates two or more audio files sequentially (uses pydub)."""
|
210 |
if len(files) < 2:
|
211 |
raise HTTPException(status_code=422, detail="Please upload at least two files to concatenate.")
|
212 |
|
213 |
logger.info(f"Concatenate request: {len(files)} files, output_format='{output_format}'")
|
214 |
+
input_dirs = [] # Store directories to clean up
|
215 |
+
loaded_audios = []
|
216 |
+
output_path = None
|
217 |
|
218 |
try:
|
219 |
+
for file in files:
|
220 |
+
input_path = await save_upload_file(file)
|
221 |
+
input_dir = os.path.dirname(input_path)
|
222 |
+
input_dirs.append(input_dir)
|
223 |
+
background_tasks.add_task(cleanup_path, input_dir)
|
224 |
+
audio = load_audio(input_path)
|
225 |
+
loaded_audios.append(audio)
|
226 |
+
|
227 |
+
if not loaded_audios: raise ValueError("No audio segments loaded.")
|
228 |
+
|
229 |
+
combined_audio = loaded_audios[0]
|
230 |
+
for i in range(1, len(loaded_audios)):
|
231 |
+
combined_audio += loaded_audios[i]
|
232 |
+
logger.info(f"Concatenated audio length: {len(combined_audio)}ms")
|
233 |
+
|
234 |
+
first_filename_base = os.path.splitext(files[0].filename)[0]
|
235 |
+
output_base = f"concat_{first_filename_base}_and_{len(files)-1}_others"
|
236 |
+
output_path = export_audio(combined_audio, output_format, base_filename=output_base)
|
237 |
+
background_tasks.add_task(cleanup_path, output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
return FileResponse(
|
240 |
path=output_path,
|
241 |
media_type=f"audio/{output_format}",
|
242 |
+
filename=f"{output_base}.{output_format}"
|
243 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
except Exception as e:
|
245 |
+
logger.error(f"Error during concat operation: {e}", exc_info=True)
|
246 |
+
if output_path: cleanup_path(output_path)
|
247 |
+
# Input dirs cleanup handled by background tasks
|
248 |
+
if isinstance(e, HTTPException): raise e
|
249 |
+
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during concatenation: {str(e)}")
|
250 |
|
251 |
|
252 |
+
@app.post("/volume", tags=["Editing - Pydub"])
|
253 |
async def change_volume(
|
254 |
background_tasks: BackgroundTasks,
|
255 |
file: UploadFile = File(..., description="Audio file to adjust volume for."),
|
256 |
+
change_db: float = Form(..., description="Volume change in decibels (dB). +/- values.")
|
257 |
):
|
258 |
+
"""Adjusts audio volume (uses pydub)."""
|
259 |
logger.info(f"Volume request: file='{file.filename}', change_db={change_db}dB")
|
260 |
+
input_path = await save_upload_file(file)
|
261 |
+
input_dir = os.path.dirname(input_path)
|
262 |
+
background_tasks.add_task(cleanup_path, input_dir)
|
263 |
output_path = None
|
264 |
+
|
265 |
try:
|
266 |
+
audio = load_audio(input_path)
|
|
|
|
|
|
|
267 |
adjusted_audio = audio + change_db
|
268 |
logger.info(f"Volume adjusted by {change_db}dB.")
|
269 |
|
270 |
+
original_format = os.path.splitext(file.filename)[1][1:].lower() or "mp3"
|
271 |
+
if original_format in ["tmp", ""]: original_format = "mp3"
|
|
|
|
|
|
|
272 |
|
273 |
+
output_base = f"volume_{change_db}dB_{os.path.splitext(file.filename)[0]}"
|
274 |
+
output_path = export_audio(adjusted_audio, original_format, base_filename=output_base)
|
275 |
+
background_tasks.add_task(cleanup_path, output_path)
|
276 |
|
277 |
return FileResponse(
|
278 |
path=output_path,
|
279 |
media_type=f"audio/{original_format}",
|
280 |
+
filename=f"{output_base}.{original_format}" # Use correct extension
|
281 |
)
|
|
|
|
|
|
|
|
|
282 |
except Exception as e:
|
283 |
+
logger.error(f"Error during volume operation: {e}", exc_info=True)
|
284 |
+
if output_path: cleanup_path(output_path)
|
285 |
+
if isinstance(e, HTTPException): raise e
|
286 |
+
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during volume adjustment: {str(e)}")
|
287 |
|
288 |
|
289 |
+
@app.post("/convert", tags=["Editing - Pydub"])
|
290 |
async def convert_format(
|
291 |
background_tasks: BackgroundTasks,
|
292 |
file: UploadFile = File(..., description="Audio file to convert."),
|
293 |
output_format: str = Form(..., description="Target audio format (e.g., 'mp3', 'wav', 'ogg', 'flac').")
|
294 |
):
|
295 |
+
"""Converts audio file format (uses pydub)."""
|
296 |
+
allowed_formats = {'mp3', 'wav', 'ogg', 'flac', 'aac', 'm4a'}
|
297 |
+
safe_output_format = output_format.lower()
|
298 |
+
if safe_output_format not in allowed_formats:
|
299 |
+
raise HTTPException(status_code=422, detail=f"Invalid output format. Allowed: {', '.join(allowed_formats)}")
|
300 |
+
|
301 |
+
logger.info(f"Convert request: file='{file.filename}', output_format='{safe_output_format}'")
|
302 |
+
input_path = await save_upload_file(file)
|
303 |
+
input_dir = os.path.dirname(input_path)
|
304 |
+
background_tasks.add_task(cleanup_path, input_dir)
|
305 |
output_path = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
try:
|
308 |
+
audio = load_audio(input_path)
|
309 |
filename_base = os.path.splitext(file.filename)[0]
|
310 |
+
output_base = f"{filename_base}_converted"
|
311 |
|
312 |
+
output_path = export_audio(audio, safe_output_format, base_filename=output_base)
|
313 |
+
background_tasks.add_task(cleanup_path, output_path)
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
return FileResponse(
|
316 |
path=output_path,
|
317 |
+
media_type=f"audio/{safe_output_format}",
|
318 |
+
filename=f"{output_base}.{safe_output_format}"
|
319 |
)
|
|
|
|
|
|
|
|
|
320 |
except Exception as e:
|
321 |
+
logger.error(f"Error during convert operation: {e}", exc_info=True)
|
322 |
+
if output_path: cleanup_path(output_path)
|
323 |
+
if isinstance(e, HTTPException): raise e
|
324 |
+
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during format conversion: {str(e)}")
|
325 |
|
326 |
|
327 |
+
# --- AI Vocal Removal Endpoint ---
|
328 |
|
329 |
+
@app.post("/ai/remove-vocals", tags=["Editing - AI"])
|
330 |
+
async def ai_remove_vocals(
|
331 |
background_tasks: BackgroundTasks,
|
332 |
+
file: UploadFile = File(..., description="Audio file containing mixed vocals and accompaniment."),
|
333 |
+
stem_to_return: Literal['accompaniment', 'vocals'] = Form("accompaniment", description="Which stem to return: 'accompaniment' (default) or 'vocals'."),
|
334 |
+
output_format: str = Form("wav", description="Output format for the separated stem (e.g., 'wav', 'mp3'). WAV recommended for quality.")
|
|
|
335 |
):
|
336 |
+
"""
|
337 |
+
Separates vocals from accompaniment using Spleeter (AI model).
|
338 |
+
NOTE: This is computationally intensive and can take significant time.
|
339 |
+
"""
|
340 |
+
if not spleeter_separator:
|
341 |
+
logger.warning("Vocal removal endpoint called, but Spleeter is not available.")
|
342 |
+
raise HTTPException(status_code=503, detail="AI Vocal Removal service is unavailable (Spleeter not loaded).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
+
logger.info(f"AI Vocal Removal request: file='{file.filename}', return='{stem_to_return}', format='{output_format}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
+
input_path = await save_upload_file(file)
|
347 |
+
input_dir = os.path.dirname(input_path) # Directory where input was saved
|
348 |
+
spleeter_output_dir = os.path.join(TEMP_DIR, f"spleeter_out_{uuid.uuid4().hex}") # Unique output dir for Spleeter
|
349 |
+
final_output_path = None # Path to the file that will be returned
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
# Schedule cleanup for both input dir and potential Spleeter output dir
|
352 |
+
background_tasks.add_task(cleanup_path, input_dir)
|
353 |
+
background_tasks.add_task(cleanup_path, spleeter_output_dir) # This will be created by Spleeter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
try:
|
356 |
+
logger.info(f"Starting Spleeter separation for {input_path} into {spleeter_output_dir}...")
|
357 |
+
# Spleeter separates into the specified directory, creating <filename>/vocals.wav and <filename>/accompaniment.wav
|
358 |
+
# We pass the input *file* path and the desired *output directory* path.
|
359 |
+
spleeter_separator.separate_to_file(
|
360 |
+
input_path,
|
361 |
+
spleeter_output_dir,
|
362 |
+
codec='wav' # Spleeter defaults to WAV, ensuring consistent intermediate format
|
363 |
)
|
364 |
+
logger.info(f"Spleeter separation completed.")
|
365 |
+
|
366 |
+
# Spleeter creates a subdirectory named after the input file (without extension)
|
367 |
+
input_filename_base = os.path.splitext(os.path.basename(input_path))[0]
|
368 |
+
stem_output_folder = os.path.join(spleeter_output_dir, input_filename_base)
|
369 |
+
|
370 |
+
# Determine the path to the requested stem file (always WAV from Spleeter)
|
371 |
+
target_stem_filename = f"{stem_to_return}.wav"
|
372 |
+
raw_stem_path = os.path.join(stem_output_folder, target_stem_filename)
|
373 |
+
|
374 |
+
if not os.path.exists(raw_stem_path):
|
375 |
+
logger.error(f"Spleeter output stem not found: {raw_stem_path}")
|
376 |
+
raise HTTPException(status_code=500, detail=f"AI separation failed: Could not find the '{stem_to_return}' stem.")
|
377 |
+
|
378 |
+
# --- Optional Conversion ---
|
379 |
+
safe_output_format = output_format.lower()
|
380 |
+
if safe_output_format == "wav":
|
381 |
+
# No conversion needed, return the direct Spleeter output
|
382 |
+
# We need to move/copy it out of the spleeter dir *or* just return it directly
|
383 |
+
# For simplicity and better cleanup, let's return it directly.
|
384 |
+
# BUT FileResponse needs the final path, and background task cleans the whole spleeter_output_dir.
|
385 |
+
# SAFER: Copy the desired file out to the main TEMP_DIR before returning.
|
386 |
+
final_output_path = os.path.join(TEMP_DIR, f"{input_filename_base}_{stem_to_return}_{uuid.uuid4().hex}.wav")
|
387 |
+
shutil.copyfile(raw_stem_path, final_output_path)
|
388 |
+
logger.info(f"Copied requested WAV stem to final output path: {final_output_path}")
|
389 |
+
background_tasks.add_task(cleanup_path, final_output_path) # Schedule cleanup for the copy
|
390 |
+
|
391 |
+
else:
|
392 |
+
# Convert the WAV stem to the desired format using pydub
|
393 |
+
logger.info(f"Loading separated '{stem_to_return}' stem for conversion to '{safe_output_format}'...")
|
394 |
+
audio_stem = load_audio(raw_stem_path) # Load the WAV stem
|
395 |
+
output_base = f"{input_filename_base}_{stem_to_return}"
|
396 |
+
final_output_path = export_audio(audio_stem, safe_output_format, base_filename=output_base)
|
397 |
+
logger.info(f"Converted stem saved to: {final_output_path}")
|
398 |
+
background_tasks.add_task(cleanup_path, final_output_path) # Schedule cleanup for converted file
|
399 |
+
|
400 |
+
# --- Return Result ---
|
401 |
+
if not final_output_path or not os.path.exists(final_output_path):
|
402 |
+
raise HTTPException(status_code=500, detail="Failed to prepare final output file after separation.")
|
403 |
+
|
404 |
+
return FileResponse(
|
405 |
+
path=final_output_path,
|
406 |
+
media_type=f"audio/{safe_output_format}", # Use the final format's media type
|
407 |
+
filename=os.path.basename(final_output_path) # Use the actual generated filename
|
|
|
|
|
|
|
408 |
)
|
409 |
+
|
|
|
|
|
|
|
|
|
|
|
410 |
except Exception as e:
|
411 |
+
logger.error(f"Error during AI Vocal Removal operation: {e}", exc_info=True)
|
412 |
+
if final_output_path: cleanup_path(final_output_path) # Attempt immediate cleanup if needed
|
413 |
+
# Input/Spleeter dir cleanup handled by background tasks
|
414 |
+
if isinstance(e, HTTPException): raise e
|
415 |
+
else: raise HTTPException(status_code=500, detail=f"An unexpected error occurred during AI processing: {str(e)}")
|
|
|
|
|
|
|
|
|
416 |
|
417 |
|
418 |
# --- How to Run ---
|
419 |
+
# 1. Make sure FFmpeg is installed and accessible in your PATH.
|
420 |
# 2. Save this code as `app.py`.
|
421 |
+
# 3. Create `requirements.txt` (as shown above).
|
422 |
+
# 4. Install dependencies: `pip install -r requirements.txt` (THIS MAY TAKE A WHILE!)
|
423 |
+
# 5. Run the FastAPI server: `uvicorn app:app --reload`
|
424 |
+
#
|
425 |
+
# --- Example Usage (using curl) ---
|
426 |
+
#
|
427 |
+
# **AI Remove Vocals (Get Accompaniment as WAV):**
|
428 |
+
# curl -X POST "http://127.0.0.1:8000/ai/remove-vocals" \
|
429 |
+
# -F "file=@my_song_mix.mp3" \
|
430 |
+
# -F "stem_to_return=accompaniment" \
|
431 |
+
# -F "output_format=wav" \
|
432 |
+
# --output accompaniment_output.wav
|
433 |
+
#
|
434 |
+
# **AI Remove Vocals (Get Vocals as MP3):**
|
435 |
+
# curl -X POST "http://127.0.0.1:8000/ai/remove-vocals" \
|
436 |
+
# -F "file=@another_track.wav" \
|
437 |
+
# -F "stem_to_return=vocals" \
|
438 |
+
# -F "output_format=mp3" \
|
439 |
+
# --output vocals_only_output.mp3
|
440 |
#
|
441 |
+
# (Other examples for /trim, /concat, /volume, /convert remain the same as before)
|
|
|
|
|
|
|
|