File size: 6,737 Bytes
305c59b
7fe102a
16649a3
7fe102a
 
16649a3
 
 
 
1e0f1bc
7fe102a
 
 
 
 
 
 
 
1e0f1bc
16649a3
 
 
 
 
 
 
 
 
7fe102a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868debc
16649a3
7fe102a
 
 
 
 
16649a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe102a
16649a3
 
 
 
 
 
 
 
 
 
 
 
 
7fe102a
 
 
 
 
16649a3
1e0f1bc
7fe102a
868debc
16649a3
868debc
 
 
 
 
7fe102a
 
 
868debc
 
7fe102a
 
16649a3
 
7fe102a
868debc
 
 
16649a3
 
 
 
 
 
 
 
 
 
 
 
868debc
1e0f1bc
7fe102a
868debc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import whisper
import torch
import os
from pydub import AudioSegment
from transformers import pipeline

# Ensure compatible versions of torch and transformers are installed
# Run: pip install torch==1.13.1 transformers==4.26.1

# Mapping of model names to Whisper model sizes
MODELS = {
    "Tiny (Fastest)": "tiny",
    "Base (Faster)": "base",
    "Small (Balanced)": "small",
    "Medium (Accurate)": "medium",
    "Large (Most Accurate)": "large"
}

# Fine-tuned models for specific languages
FINE_TUNED_MODELS = {
    "Tamil": {
        "model": "vasista22/whisper-tamil-medium",
        "language": "ta"
    },
    # Add more fine-tuned models for other languages here
}

# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
    "Auto Detect": "Auto Detect",
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Maori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Punjabi": "pa",
    "Sinhala": "si",  # Sinhala support
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian Creole": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "Javanese": "jw",
    "Sundanese": "su",
}

def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
    """Transcribe the audio file."""
    # Convert audio to 16kHz mono for better compatibility
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Load the appropriate model
    if language in FINE_TUNED_MODELS:
        # Use the fine-tuned Whisper model for the selected language
        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        transcribe = pipeline(
            task="automatic-speech-recognition",
            model=FINE_TUNED_MODELS[language]["model"],
            chunk_length_s=30,
            device=device
        )
        transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(
            language=FINE_TUNED_MODELS[language]["language"],
            task="transcribe"
        )
        result = transcribe(processed_audio_path)
        transcription = result["text"]
        detected_language = language
    else:
        # Use the selected Whisper model
        model = whisper.load_model(MODELS[model_size])
        
        # Transcribe the audio
        if language == "Auto Detect":
            result = model.transcribe(processed_audio_path, fp16=False)  # Auto-detect language
            detected_language = result.get("language", "unknown")
        else:
            language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")  # Default to English if not found
            result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
            detected_language = language_code
        
        transcription = result["text"]
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    # Return transcription and detected language
    return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Audio Transcription with Fine-Tuned Models")
    
    with gr.Tab("Transcribe Audio"):
        gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
        transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        language_dropdown = gr.Dropdown(
            choices=list(LANGUAGE_NAME_TO_CODE.keys()),  # Full language names
            label="Select Language",
            value="Auto Detect"
        )
        model_dropdown = gr.Dropdown(
            choices=list(MODELS.keys()),  # Model options
            label="Select Model",
            value="Base (Faster)",  # Default to "Base" model
            interactive=True  # Allow model selection by default
        )
        transcribe_output = gr.Textbox(label="Transcription and Detected Language")
        transcribe_button = gr.Button("Transcribe Audio")
    
    # Update model dropdown based on language selection
    def update_model_dropdown(language):
        if language in FINE_TUNED_MODELS:
            # Add "Fine-Tuned Model" to the dropdown choices and disable it
            return gr.Dropdown(choices=["Fine-Tuned Model"], value="Fine-Tuned Model", interactive=False)
        else:
            # Reset the dropdown to standard Whisper models
            return gr.Dropdown(choices=list(MODELS.keys()), value="Base (Faster)", interactive=True)
    
    language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
    
    # Link button to function
    transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)

# Launch the Gradio interface
demo.launch()