File size: 15,558 Bytes
305c59b
7fe102a
16649a3
7fe102a
6bfef72
ba6b40b
573f5cd
 
16649a3
7fe102a
 
 
 
 
 
ba6b40b
0a51f5f
16649a3
 
7fe102a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfd9ff1
 
 
6b2690e
 
0a51f5f
 
 
6b2690e
0a51f5f
 
 
 
6b2690e
 
 
 
 
0a51f5f
 
 
cfd9ff1
 
 
6b2690e
 
 
 
 
 
6bfef72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b616e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573f5cd
06326e5
573f5cd
06326e5
 
 
573f5cd
06326e5
 
573f5cd
06326e5
13b616e
 
 
 
 
06326e5
700dfd4
 
 
 
4f33135
573f5cd
 
06326e5
573f5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f33135
 
 
573f5cd
 
4f33135
f028775
13b616e
 
 
06326e5
f028775
2eebdd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dff986d
868debc
16649a3
7fe102a
 
 
 
 
16649a3
0a51f5f
 
 
 
 
 
 
 
 
 
 
 
 
16649a3
0a51f5f
 
 
7fe102a
0a51f5f
 
 
 
 
 
 
cfd9ff1
16649a3
0a51f5f
 
 
 
 
7fe102a
 
 
 
 
16649a3
1e0f1bc
7fe102a
868debc
6b2690e
 
 
 
 
 
 
868debc
 
 
 
 
7fe102a
 
 
868debc
 
7fe102a
 
0a51f5f
16649a3
7fe102a
868debc
 
 
dff986d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573f5cd
2eebdd2
 
573f5cd
 
 
 
06326e5
2eebdd2
 
573f5cd
f028775
6b2690e
 
6bfef72
 
dff986d
6bfef72
 
dff986d
 
 
 
 
573f5cd
2eebdd2
 
 
f028775
1e0f1bc
7fe102a
868debc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import gradio as gr
import whisper
import torch
import os
from pydub import AudioSegment, silence
from faster_whisper import WhisperModel  # Import faster-whisper
import numpy as np
from scipy.io import wavfile

# Mapping of model names to Whisper model sizes
MODELS = {
    "Tiny (Fastest)": "tiny",
    "Base (Faster)": "base",
    "Small (Balanced)": "small",
    "Medium (Accurate)": "medium",
    "Large (Most Accurate)": "large",
    "Faster Whisper Large v3": "Systran/faster-whisper-large-v3"  # Renamed and set as default
}

# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
    "Auto Detect": "Auto Detect",
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Maori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Punjabi": "pa",
    "Sinhala": "si",  # Sinhala support
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian Creole": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "Javanese": "jw",
    "Sundanese": "su",
}

# Reverse mapping of language codes to full language names
CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()}

def detect_language(audio_file):
    """Detect the language of the audio file."""
    # Define device and compute type for faster-whisper
    device = "cuda" if torch.cuda.is_available() else "cpu"
    compute_type = "float32" if device == "cuda" else "int8"
    
    # Load the faster-whisper model for language detection
    model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
    
    # Convert audio to 16kHz mono for better compatibility
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Detect the language using faster-whisper
    segments, info = model.transcribe(processed_audio_path, task="translate", language=None)
    detected_language_code = info.language
    
    # Get the full language name from the code
    detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    return f"Detected Language: {detected_language}"

def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
    """
    Remove silence from the audio file using AI-based silence detection.
    
    Args:
        audio_file (str): Path to the input audio file.
        silence_threshold (int): Silence threshold in dB. Default is -40 dB.
        min_silence_len (int): Minimum length of silence to remove in milliseconds. Default is 500 ms.
    
    Returns:
        str: Path to the output audio file with silence removed.
    """
    # Load the audio file
    audio = AudioSegment.from_file(audio_file)
    
    # Detect silent chunks
    silent_chunks = silence.detect_silence(
        audio,
        min_silence_len=min_silence_len,
        silence_thresh=silence_threshold
    )
    
    # Remove silent chunks
    non_silent_audio = AudioSegment.empty()
    start = 0
    for chunk in silent_chunks:
        non_silent_audio += audio[start:chunk[0]]  # Add non-silent part
        start = chunk[1]  # Move to the end of the silent chunk
    non_silent_audio += audio[start:]  # Add the remaining part
    
    # Export the processed audio
    output_path = "silence_removed_audio.wav"
    non_silent_audio.export(output_path, format="wav")
    
    return output_path

def convert_to_wav(audio_file):
    """
    Convert the input audio file to WAV format.
    
    Args:
        audio_file (str): Path to the input audio file.
    
    Returns:
        str: Path to the converted WAV file.
    """
    audio = AudioSegment.from_file(audio_file)
    wav_path = "converted_audio.wav"
    audio.export(wav_path, format="wav")
    return wav_path

def detect_voice_activity(audio_file, threshold=0.02):
    """
    Detect voice activity in the audio file and trim the audio to include only voice segments.
    
    Args:
        audio_file (str): Path to the input audio file.
        threshold (float): Amplitude threshold for voice detection. Default is 0.02.
    
    Returns:
        str: Path to the output audio file with only voice segments.
    """
    # Convert the input audio to WAV format
    wav_path = convert_to_wav(audio_file)
    
    # Load the WAV file
    sample_rate, data = wavfile.read(wav_path)
    
    # If the audio is stereo, convert it to mono by averaging the channels
    if len(data.shape) > 1:
        data = np.mean(data, axis=1)
    
    # Normalize the audio data to the range [-1, 1]
    if data.dtype != np.float32:
        data = data.astype(np.float32) / np.iinfo(data.dtype).max
    
    # Detect voice activity
    voice_segments = []
    is_voice = False
    start = 0
    for i, sample in enumerate(data):
        if abs(sample) > threshold and not is_voice:
            is_voice = True
            start = i
        elif abs(sample) <= threshold and is_voice:
            is_voice = False
            voice_segments.append((start, i))
    
    # If the last segment is voice, add it
    if is_voice:
        voice_segments.append((start, len(data)))
    
    # Trim the audio to include only voice segments
    trimmed_audio = np.array([], dtype=np.float32)
    for segment in voice_segments:
        trimmed_audio = np.concatenate((trimmed_audio, data[segment[0]:segment[1]]))
    
    # Convert the trimmed audio back to 16-bit integer format
    trimmed_audio_int16 = np.int16(trimmed_audio * 32767)
    
    # Export the trimmed audio
    output_path = "voice_trimmed_audio.wav"
    wavfile.write(output_path, sample_rate, trimmed_audio_int16)
    
    # Clean up the converted WAV file
    os.remove(wav_path)
    
    return output_path

def detect_and_trim_audio(audio_file, threshold=0.02):
    """
    Detect voice activity in the audio file, trim the audio to include only voice segments,
    and return the timestamps of the detected segments.
    
    Args:
        audio_file (str): Path to the input audio file.
        threshold (float): Amplitude threshold for voice detection. Default is 0.02.
    
    Returns:
        str: Path to the output audio file with only voice segments.
        list: List of timestamps (start, end) for the detected segments.
    """
    # Convert the input audio to WAV format
    wav_path = convert_to_wav(audio_file)
    
    # Load the WAV file
    sample_rate, data = wavfile.read(wav_path)
    
    # If the audio is stereo, convert it to mono by averaging the channels
    if len(data.shape) > 1:
        data = np.mean(data, axis=1)
    
    # Normalize the audio data to the range [-1, 1]
    if data.dtype != np.float32:
        data = data.astype(np.float32) / np.iinfo(data.dtype).max
    
    # Detect voice activity
    voice_segments = []
    is_voice = False
    start = 0
    for i, sample in enumerate(data):
        if abs(sample) > threshold and not is_voice:
            is_voice = True
            start = i
        elif abs(sample) <= threshold and is_voice:
            is_voice = False
            voice_segments.append((start, i))
    
    # If the last segment is voice, add it
    if is_voice:
        voice_segments.append((start, len(data)))
    
    # Trim the audio to include only voice segments
    trimmed_audio = np.array([], dtype=np.float32)
    for segment in voice_segments:
        trimmed_audio = np.concatenate((trimmed_audio, data[segment[0]:segment[1]]))
    
    # Convert the trimmed audio back to 16-bit integer format
    trimmed_audio_int16 = np.int16(trimmed_audio * 32767)
    
    # Export the trimmed audio
    output_path = "voice_trimmed_audio.wav"
    wavfile.write(output_path, sample_rate, trimmed_audio_int16)
    
    # Calculate timestamps in seconds
    timestamps = [(start / sample_rate, end / sample_rate) for start, end in voice_segments]
    
    # Clean up the converted WAV file
    os.remove(wav_path)
    
    return output_path, timestamps

def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
    """Transcribe the audio file."""
    # Convert audio to 16kHz mono for better compatibility
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Load the appropriate model
    if model_size == "Faster Whisper Large v3":
        # Define device and compute type for faster-whisper
        device = "cuda" if torch.cuda.is_available() else "cpu"
        compute_type = "float32" if device == "cuda" else "int8"
        
        # Use faster-whisper for the Systran model
        model = WhisperModel(MODELS[model_size], device=device, compute_type=compute_type)
        segments, info = model.transcribe(
            processed_audio_path,
            task="transcribe",
            word_timestamps=True,
            repetition_penalty=1.1,
            temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
        )
        transcription = " ".join([segment.text for segment in segments])
        detected_language_code = info.language
        detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
    else:
        # Use the standard Whisper model
        model = whisper.load_model(MODELS[model_size])
        
        # Transcribe the audio
        if language == "Auto Detect":
            result = model.transcribe(processed_audio_path, fp16=False)  # Auto-detect language
            detected_language_code = result.get("language", "unknown")
            detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
        else:
            language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")  # Default to English if not found
            result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
            detected_language = language
        
        transcription = result["text"]
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    # Return transcription and detected language
    return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Audio Transcription and Language Detection")
    
    with gr.Tab("Detect Language"):
        gr.Markdown("Upload an audio file to detect its language.")
        detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        detect_language_output = gr.Textbox(label="Detected Language")
        detect_button = gr.Button("Detect Language")
    
    with gr.Tab("Transcribe Audio"):
        gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
        transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        language_dropdown = gr.Dropdown(
            choices=list(LANGUAGE_NAME_TO_CODE.keys()),  # Full language names
            label="Select Language",
            value="Auto Detect"
        )
        model_dropdown = gr.Dropdown(
            choices=list(MODELS.keys()),  # Model options
            label="Select Model",
            value="Faster Whisper Large v3",  # Default to "Faster Whisper Large v3"
            interactive=True  # Allow model selection by default
        )
        transcribe_output = gr.Textbox(label="Transcription and Detected Language")
        transcribe_button = gr.Button("Transcribe Audio")
    
    with gr.Tab("Remove Silence"):
        gr.Markdown("Upload an audio file to remove silence.")
        silence_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        silence_threshold_slider = gr.Slider(
            minimum=-60, maximum=-20, value=-40, step=1,
            label="Silence Threshold (dB)",
            info="Lower values detect quieter sounds as silence."
        )
        min_silence_len_slider = gr.Slider(
            minimum=100, maximum=2000, value=500, step=100,
            label="Minimum Silence Length (ms)",
            info="Minimum duration of silence to remove."
        )
        silence_output = gr.Audio(label="Processed Audio (Silence Removed)", type="filepath")
        silence_button = gr.Button("Remove Silence")
    
    with gr.Tab("Voice Detection and Trimming"):
        gr.Markdown("Upload an audio file to detect voice activity and trim the audio.")
        voice_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        voice_threshold_slider = gr.Slider(
            minimum=0.01, maximum=0.1, value=0.02, step=0.01,
            label="Voice Detection Threshold",
            info="Higher values detect louder sounds as voice."
        )
        voice_output = gr.Audio(label="Trimmed Audio", type="filepath")
        timestamps_output = gr.Textbox(label="Detected Timestamps (seconds)")
        voice_button = gr.Button("Detect and Trim Voice")
    
    # Link buttons to functions
    detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
    transcribe_button.click(
        transcribe_audio,
        inputs=[transcribe_audio_input, language_dropdown, model_dropdown],
        outputs=transcribe_output
    )
    silence_button.click(
        remove_silence,
        inputs=[silence_audio_input, silence_threshold_slider, min_silence_len_slider],
        outputs=silence_output
    )
    voice_button.click(
        detect_and_trim_audio,
        inputs=[voice_audio_input, voice_threshold_slider],
        outputs=[voice_output, timestamps_output]
    )

# Launch the Gradio interface
demo.launch()