File size: 920 Bytes
305c59b
49d93f9
305c59b
49d93f9
 
305c59b
49d93f9
 
 
 
305c59b
49d93f9
 
305c59b
49d93f9
 
 
 
 
 
 
305c59b
 
49d93f9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import gradio as gr
from transformers import pipeline

# Load the Whisper model for speech recognition
model = pipeline("automatic-speech-recognition", model="openai/whisper-medium")

def transcribe_audio(audio_file, language="english"):
    # Transcribe the audio file
    transcription = model(audio_file, generate_kwargs={"language": language})
    return transcription["text"]

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe_audio,
    inputs=[
        gr.Audio(type="filepath", label="Upload Audio File"),
        gr.Dropdown(choices=["english", "spanish", "french", "german", "chinese", "japanese", "korean", "hindi"], label="Select Language", value="english")
    ],
    outputs=gr.Textbox(label="Transcription"),
    title="Multi-Language Audio Transcription",
    description="Upload an audio file and select the language to transcribe it."
)

# Launch the Gradio interface
iface.launch()