Spaces:
Running
Running
File size: 6,042 Bytes
305c59b 7fe102a 1e0f1bc 7fe102a 1e0f1bc 7fe102a 868debc 7fe102a 868debc 7fe102a 1e0f1bc 7fe102a 868debc 7fe102a 868debc 7fe102a 868debc 1e0f1bc 7fe102a 868debc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import whisper
import os
from pydub import AudioSegment
# Mapping of model names to Whisper model sizes
MODELS = {
"Tiny (Fastest)": "tiny",
"Base (Faster)": "base",
"Small (Balanced)": "small",
"Medium (Accurate)": "medium",
"Large (Most Accurate)": "large"
}
# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
"Auto Detect": "Auto Detect",
"English": "en",
"Chinese": "zh",
"German": "de",
"Spanish": "es",
"Russian": "ru",
"Korean": "ko",
"French": "fr",
"Japanese": "ja",
"Portuguese": "pt",
"Turkish": "tr",
"Polish": "pl",
"Catalan": "ca",
"Dutch": "nl",
"Arabic": "ar",
"Swedish": "sv",
"Italian": "it",
"Indonesian": "id",
"Hindi": "hi",
"Finnish": "fi",
"Vietnamese": "vi",
"Hebrew": "he",
"Ukrainian": "uk",
"Greek": "el",
"Malay": "ms",
"Czech": "cs",
"Romanian": "ro",
"Danish": "da",
"Hungarian": "hu",
"Tamil": "ta",
"Norwegian": "no",
"Thai": "th",
"Urdu": "ur",
"Croatian": "hr",
"Bulgarian": "bg",
"Lithuanian": "lt",
"Latin": "la",
"Maori": "mi",
"Malayalam": "ml",
"Welsh": "cy",
"Slovak": "sk",
"Telugu": "te",
"Persian": "fa",
"Latvian": "lv",
"Bengali": "bn",
"Serbian": "sr",
"Azerbaijani": "az",
"Slovenian": "sl",
"Kannada": "kn",
"Estonian": "et",
"Macedonian": "mk",
"Breton": "br",
"Basque": "eu",
"Icelandic": "is",
"Armenian": "hy",
"Nepali": "ne",
"Mongolian": "mn",
"Bosnian": "bs",
"Kazakh": "kk",
"Albanian": "sq",
"Swahili": "sw",
"Galician": "gl",
"Marathi": "mr",
"Punjabi": "pa",
"Sinhala": "si", # Sinhala support
"Khmer": "km",
"Shona": "sn",
"Yoruba": "yo",
"Somali": "so",
"Afrikaans": "af",
"Occitan": "oc",
"Georgian": "ka",
"Belarusian": "be",
"Tajik": "tg",
"Sindhi": "sd",
"Gujarati": "gu",
"Amharic": "am",
"Yiddish": "yi",
"Lao": "lo",
"Uzbek": "uz",
"Faroese": "fo",
"Haitian Creole": "ht",
"Pashto": "ps",
"Turkmen": "tk",
"Nynorsk": "nn",
"Maltese": "mt",
"Sanskrit": "sa",
"Luxembourgish": "lb",
"Burmese": "my",
"Tibetan": "bo",
"Tagalog": "tl",
"Malagasy": "mg",
"Assamese": "as",
"Tatar": "tt",
"Hawaiian": "haw",
"Lingala": "ln",
"Hausa": "ha",
"Bashkir": "ba",
"Javanese": "jw",
"Sundanese": "su",
}
def detect_language(audio_file):
"""Detect the language of the audio file."""
# Load the Whisper model (use "base" for faster detection)
model = whisper.load_model("base")
# Convert audio to 16kHz mono for better compatibility with Whisper
audio = AudioSegment.from_file(audio_file)
audio = audio.set_frame_rate(16000).set_channels(1)
processed_audio_path = "processed_audio.wav"
audio.export(processed_audio_path, format="wav")
# Detect the language
result = model.transcribe(processed_audio_path, task="detect_language", fp16=False)
detected_language = result.get("language", "unknown")
# Clean up processed audio file
os.remove(processed_audio_path)
return f"Detected Language: {detected_language}"
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
"""Transcribe the audio file."""
# Load the selected Whisper model
model = whisper.load_model(MODELS[model_size])
# Convert audio to 16kHz mono for better compatibility with Whisper
audio = AudioSegment.from_file(audio_file)
audio = audio.set_frame_rate(16000).set_channels(1)
processed_audio_path = "processed_audio.wav"
audio.export(processed_audio_path, format="wav")
# Transcribe the audio
if language == "Auto Detect":
result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
detected_language = result.get("language", "unknown")
else:
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
detected_language = language_code
# Clean up processed audio file
os.remove(processed_audio_path)
# Return transcription and detected language
return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Audio Transcription and Language Detection")
with gr.Tab("Detect Language"):
gr.Markdown("Upload an audio file to detect its language.")
detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
detect_language_output = gr.Textbox(label="Detected Language")
detect_button = gr.Button("Detect Language")
with gr.Tab("Transcribe Audio"):
gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
language_dropdown = gr.Dropdown(
choices=list(LANGUAGE_NAME_TO_CODE.keys()), # Full language names
label="Select Language",
value="Auto Detect"
)
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()), # Model options
label="Select Model",
value="Base (Faster)" # Default to "Base" model
)
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
transcribe_button = gr.Button("Transcribe Audio")
# Link buttons to functions
detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
# Launch the Gradio interface
demo.launch() |