File size: 6,042 Bytes
305c59b
7fe102a
 
 
1e0f1bc
7fe102a
 
 
 
 
 
 
 
1e0f1bc
7fe102a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868debc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe102a
868debc
7fe102a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e0f1bc
7fe102a
868debc
 
 
 
 
 
 
 
 
 
 
 
 
7fe102a
 
 
868debc
 
7fe102a
 
 
 
868debc
 
 
 
 
 
1e0f1bc
7fe102a
868debc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import whisper
import os
from pydub import AudioSegment

# Mapping of model names to Whisper model sizes
MODELS = {
    "Tiny (Fastest)": "tiny",
    "Base (Faster)": "base",
    "Small (Balanced)": "small",
    "Medium (Accurate)": "medium",
    "Large (Most Accurate)": "large"
}

# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
    "Auto Detect": "Auto Detect",
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Maori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Punjabi": "pa",
    "Sinhala": "si",  # Sinhala support
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian Creole": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "Javanese": "jw",
    "Sundanese": "su",
}

def detect_language(audio_file):
    """Detect the language of the audio file."""
    # Load the Whisper model (use "base" for faster detection)
    model = whisper.load_model("base")
    
    # Convert audio to 16kHz mono for better compatibility with Whisper
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Detect the language
    result = model.transcribe(processed_audio_path, task="detect_language", fp16=False)
    detected_language = result.get("language", "unknown")
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    return f"Detected Language: {detected_language}"

def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
    """Transcribe the audio file."""
    # Load the selected Whisper model
    model = whisper.load_model(MODELS[model_size])
    
    # Convert audio to 16kHz mono for better compatibility with Whisper
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Transcribe the audio
    if language == "Auto Detect":
        result = model.transcribe(processed_audio_path, fp16=False)  # Auto-detect language
        detected_language = result.get("language", "unknown")
    else:
        language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")  # Default to English if not found
        result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
        detected_language = language_code
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    # Return transcription and detected language
    return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Audio Transcription and Language Detection")
    
    with gr.Tab("Detect Language"):
        gr.Markdown("Upload an audio file to detect its language.")
        detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        detect_language_output = gr.Textbox(label="Detected Language")
        detect_button = gr.Button("Detect Language")
    
    with gr.Tab("Transcribe Audio"):
        gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
        transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        language_dropdown = gr.Dropdown(
            choices=list(LANGUAGE_NAME_TO_CODE.keys()),  # Full language names
            label="Select Language",
            value="Auto Detect"
        )
        model_dropdown = gr.Dropdown(
            choices=list(MODELS.keys()),  # Model options
            label="Select Model",
            value="Base (Faster)"  # Default to "Base" model
        )
        transcribe_output = gr.Textbox(label="Transcription and Detected Language")
        transcribe_button = gr.Button("Transcribe Audio")
    
    # Link buttons to functions
    detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
    transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)

# Launch the Gradio interface
demo.launch()