File size: 11,528 Bytes
305c59b
7fe102a
16649a3
7fe102a
6bfef72
ba6b40b
34dc965
16649a3
7fe102a
 
 
 
 
 
ba6b40b
0a51f5f
16649a3
 
7fe102a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfd9ff1
 
 
6b2690e
 
0a51f5f
 
 
6b2690e
0a51f5f
 
 
 
6b2690e
 
 
 
 
0a51f5f
 
 
cfd9ff1
 
 
6b2690e
 
 
 
 
 
6bfef72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34dc965
f028775
34dc965
f028775
 
 
 
 
34dc965
f028775
34dc965
 
f028775
34dc965
 
 
f028775
34dc965
 
 
f028775
34dc965
 
f028775
dff986d
868debc
16649a3
7fe102a
 
 
 
 
16649a3
0a51f5f
 
 
 
 
 
 
 
 
 
 
 
 
16649a3
0a51f5f
 
 
7fe102a
0a51f5f
 
 
 
 
 
 
cfd9ff1
16649a3
0a51f5f
 
 
 
 
7fe102a
 
 
 
 
16649a3
1e0f1bc
7fe102a
868debc
6b2690e
 
 
 
 
 
 
868debc
 
 
 
 
7fe102a
 
 
868debc
 
7fe102a
 
0a51f5f
16649a3
7fe102a
868debc
 
 
dff986d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34dc965
 
 
 
 
f028775
6b2690e
 
6bfef72
 
dff986d
6bfef72
 
dff986d
 
 
 
 
34dc965
 
 
 
f028775
1e0f1bc
7fe102a
868debc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
import whisper
import torch
import os
from pydub import AudioSegment, silence
from faster_whisper import WhisperModel  # Import faster-whisper
from spleeter.separator import Separator  # Import Spleeter for music separation

# Mapping of model names to Whisper model sizes
MODELS = {
    "Tiny (Fastest)": "tiny",
    "Base (Faster)": "base",
    "Small (Balanced)": "small",
    "Medium (Accurate)": "medium",
    "Large (Most Accurate)": "large",
    "Faster Whisper Large v3": "Systran/faster-whisper-large-v3"  # Renamed and set as default
}

# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
    "Auto Detect": "Auto Detect",
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Maori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Punjabi": "pa",
    "Sinhala": "si",  # Sinhala support
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian Creole": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "Javanese": "jw",
    "Sundanese": "su",
}

# Reverse mapping of language codes to full language names
CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()}

def detect_language(audio_file):
    """Detect the language of the audio file."""
    # Define device and compute type for faster-whisper
    device = "cuda" if torch.cuda.is_available() else "cpu"
    compute_type = "float32" if device == "cuda" else "int8"
    
    # Load the faster-whisper model for language detection
    model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
    
    # Convert audio to 16kHz mono for better compatibility
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Detect the language using faster-whisper
    segments, info = model.transcribe(processed_audio_path, task="translate", language=None)
    detected_language_code = info.language
    
    # Get the full language name from the code
    detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    return f"Detected Language: {detected_language}"

def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
    """
    Remove silence from the audio file using AI-based silence detection.
    
    Args:
        audio_file (str): Path to the input audio file.
        silence_threshold (int): Silence threshold in dB. Default is -40 dB.
        min_silence_len (int): Minimum length of silence to remove in milliseconds. Default is 500 ms.
    
    Returns:
        str: Path to the output audio file with silence removed.
    """
    # Load the audio file
    audio = AudioSegment.from_file(audio_file)
    
    # Detect silent chunks
    silent_chunks = silence.detect_silence(
        audio,
        min_silence_len=min_silence_len,
        silence_thresh=silence_threshold
    )
    
    # Remove silent chunks
    non_silent_audio = AudioSegment.empty()
    start = 0
    for chunk in silent_chunks:
        non_silent_audio += audio[start:chunk[0]]  # Add non-silent part
        start = chunk[1]  # Move to the end of the silent chunk
    non_silent_audio += audio[start:]  # Add the remaining part
    
    # Export the processed audio
    output_path = "silence_removed_audio.wav"
    non_silent_audio.export(output_path, format="wav")
    
    return output_path

def remove_background_music(audio_file):
    """
    Remove background music from the audio file using Spleeter.
    
    Args:
        audio_file (str): Path to the input audio file.
    
    Returns:
        str: Path to the output audio file with background music removed.
    """
    # Initialize Spleeter separator (2 stems: vocals and accompaniment)
    separator = Separator('spleeter:2stems')
    
    # Separate the audio into vocals and accompaniment
    output_folder = "output"
    separator.separate_to_file(audio_file, output_folder)
    
    # Load the separated vocals
    base_name = os.path.splitext(os.path.basename(audio_file))[0]
    vocals_path = os.path.join(output_folder, base_name, "vocals.wav")
    
    # Return the path to the vocals file
    return vocals_path

def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
    """Transcribe the audio file."""
    # Convert audio to 16kHz mono for better compatibility
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Load the appropriate model
    if model_size == "Faster Whisper Large v3":
        # Define device and compute type for faster-whisper
        device = "cuda" if torch.cuda.is_available() else "cpu"
        compute_type = "float32" if device == "cuda" else "int8"
        
        # Use faster-whisper for the Systran model
        model = WhisperModel(MODELS[model_size], device=device, compute_type=compute_type)
        segments, info = model.transcribe(
            processed_audio_path,
            task="transcribe",
            word_timestamps=True,
            repetition_penalty=1.1,
            temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
        )
        transcription = " ".join([segment.text for segment in segments])
        detected_language_code = info.language
        detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
    else:
        # Use the standard Whisper model
        model = whisper.load_model(MODELS[model_size])
        
        # Transcribe the audio
        if language == "Auto Detect":
            result = model.transcribe(processed_audio_path, fp16=False)  # Auto-detect language
            detected_language_code = result.get("language", "unknown")
            detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
        else:
            language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")  # Default to English if not found
            result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
            detected_language = language
        
        transcription = result["text"]
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    # Return transcription and detected language
    return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Audio Transcription and Language Detection")
    
    with gr.Tab("Detect Language"):
        gr.Markdown("Upload an audio file to detect its language.")
        detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        detect_language_output = gr.Textbox(label="Detected Language")
        detect_button = gr.Button("Detect Language")
    
    with gr.Tab("Transcribe Audio"):
        gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
        transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        language_dropdown = gr.Dropdown(
            choices=list(LANGUAGE_NAME_TO_CODE.keys()),  # Full language names
            label="Select Language",
            value="Auto Detect"
        )
        model_dropdown = gr.Dropdown(
            choices=list(MODELS.keys()),  # Model options
            label="Select Model",
            value="Faster Whisper Large v3",  # Default to "Faster Whisper Large v3"
            interactive=True  # Allow model selection by default
        )
        transcribe_output = gr.Textbox(label="Transcription and Detected Language")
        transcribe_button = gr.Button("Transcribe Audio")
    
    with gr.Tab("Remove Silence"):
        gr.Markdown("Upload an audio file to remove silence.")
        silence_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        silence_threshold_slider = gr.Slider(
            minimum=-60, maximum=-20, value=-40, step=1,
            label="Silence Threshold (dB)",
            info="Lower values detect quieter sounds as silence."
        )
        min_silence_len_slider = gr.Slider(
            minimum=100, maximum=2000, value=500, step=100,
            label="Minimum Silence Length (ms)",
            info="Minimum duration of silence to remove."
        )
        silence_output = gr.Audio(label="Processed Audio (Silence Removed)", type="filepath")
        silence_button = gr.Button("Remove Silence")
    
    with gr.Tab("Remove Background Music"):
        gr.Markdown("Upload an audio file to remove background music.")
        bg_music_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        bg_music_output = gr.Audio(label="Processed Audio (Background Music Removed)", type="filepath")
        bg_music_button = gr.Button("Remove Background Music")
    
    # Link buttons to functions
    detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
    transcribe_button.click(
        transcribe_audio,
        inputs=[transcribe_audio_input, language_dropdown, model_dropdown],
        outputs=transcribe_output
    )
    silence_button.click(
        remove_silence,
        inputs=[silence_audio_input, silence_threshold_slider, min_silence_len_slider],
        outputs=silence_output
    )
    bg_music_button.click(
        remove_background_music,
        inputs=bg_music_audio_input,
        outputs=bg_music_output
    )

# Launch the Gradio interface
demo.launch()