File size: 4,949 Bytes
305c59b
8a6a9a9
1a0ef3f
8a6a9a9
305c59b
c53ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305c59b
bda7faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959d3d3
bda7faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d93f9
 
305c59b
bda7faf
 
 
 
 
 
 
 
8ff4639
c53ccee
 
305c59b
 
49d93f9
8ff4639
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import whisper
import os
from pydub import AudioSegment

# Load the base Whisper model
base_model = whisper.load_model("base")  # Default model for non-Sinhala languages

# Load the fine-tuned Sinhala model (if available)
sinhala_model = None
try:
    from transformers import WhisperForConditionalGeneration, WhisperProcessor
    sinhala_model = WhisperForConditionalGeneration.from_pretrained("Subhaka/whisper-small-Sinhala-Fine_Tune")
    sinhala_processor = WhisperProcessor.from_pretrained("Subhaka/whisper-small-Sinhala-Fine_Tune")
except Exception as e:
    print("Failed to load fine-tuned Sinhala model. Falling back to the base model.")
    print(f"Error: {e}")

def transcribe_audio(audio_file, language="Auto Detect"):
    # Convert audio to 16kHz mono for better compatibility with Whisper
    audio = AudioSegment.from_file(audio_file)
    audio = audio.set_frame_rate(16000).set_channels(1)
    processed_audio_path = "processed_audio.wav"
    audio.export(processed_audio_path, format="wav")
    
    # Load the appropriate model based on the selected language
    if language == "Sinhala" and sinhala_model is not None:
        print("Using fine-tuned Sinhala model.")
        model = sinhala_model
        processor = sinhala_processor
    else:
        print("Using base Whisper model.")
        model = base_model
        processor = None
    
    # Transcribe the audio
    if language == "Auto Detect":
        result = model.transcribe(processed_audio_path, fp16=False)  # Auto-detect language
        detected_language = result.get("language", "unknown")
    else:
        language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")  # Default to English if not found
        result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
        detected_language = language_code
    
    # Clean up processed audio file
    os.remove(processed_audio_path)
    
    # Return transcription and detected language
    return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"

# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
    "Auto Detect": "Auto Detect",
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Maori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Punjabi": "pa",
    "Sinhala": "si",  # Sinhala support
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian Creole": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "Javanese": "jw",
    "Sundanese": "su",
}

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe_audio,
    inputs=[
        gr.Audio(type="filepath", label="Upload Audio File"),
        gr.Dropdown(
            choices=list(LANGUAGE_NAME_TO_CODE.keys()),  # Full language names
            label="Select Language",
            value="Auto Detect"
        )
    ],
    outputs=gr.Textbox(label="Transcription and Detected Language"),
    title="Audio Transcription with Language Selection",
    description="Upload an audio file and select a language (or choose 'Auto Detect'). For Sinhala, a fine-tuned model will be used automatically."
)

# Launch the Gradio interface
iface.launch()