Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Specify the correct model name and adjust the loading configuration | |
model_name = "Subhaka/whisper-small-Sinhala-Fine_Tune" | |
# Define the pipeline with `use_safetensors=True` | |
def load_pipeline(): | |
return pipeline( | |
"automatic-speech-recognition", | |
model=model_name, | |
use_safetensors=True, # Ensure compatibility with safetensors | |
) | |
# Load the model pipeline | |
transcriber = load_pipeline() | |
# Define a transcription function | |
def transcribe_audio(audio_file): | |
try: | |
transcription = transcriber(audio_file)["text"] | |
return transcription | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio"), | |
outputs=gr.Textbox(label="Transcription"), | |
title="Sinhala Audio-to-Text Transcription", | |
description="Upload an audio file and get the transcription in Sinhala using the Whisper model fine-tuned by Subhaka.", | |
allow_flagging="never" | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch(server_name="0.0.0.0", server_port=7860, share=True) | |