|
import gradio as gr |
|
import whisper |
|
import torch |
|
import os |
|
from pydub import AudioSegment |
|
from transformers import pipeline |
|
from faster_whisper import WhisperModel |
|
|
|
|
|
MODELS = { |
|
"Tiny (Fastest)": "tiny", |
|
"Base (Faster)": "base", |
|
"Small (Balanced)": "small", |
|
"Medium (Accurate)": "medium", |
|
"Large (Most Accurate)": "large", |
|
"Systran Faster Whisper Large v3": "Systran/faster-whisper-large-v3" |
|
} |
|
|
|
|
|
FINE_TUNED_MODELS = { |
|
"Tamil": { |
|
"model": "vasista22/whisper-tamil-medium", |
|
"language": "ta" |
|
}, |
|
|
|
} |
|
|
|
|
|
LANGUAGE_NAME_TO_CODE = { |
|
"Auto Detect": "Auto Detect", |
|
"English": "en", |
|
"Chinese": "zh", |
|
"German": "de", |
|
"Spanish": "es", |
|
"Russian": "ru", |
|
"Korean": "ko", |
|
"French": "fr", |
|
"Japanese": "ja", |
|
"Portuguese": "pt", |
|
"Turkish": "tr", |
|
"Polish": "pl", |
|
"Catalan": "ca", |
|
"Dutch": "nl", |
|
"Arabic": "ar", |
|
"Swedish": "sv", |
|
"Italian": "it", |
|
"Indonesian": "id", |
|
"Hindi": "hi", |
|
"Finnish": "fi", |
|
"Vietnamese": "vi", |
|
"Hebrew": "he", |
|
"Ukrainian": "uk", |
|
"Greek": "el", |
|
"Malay": "ms", |
|
"Czech": "cs", |
|
"Romanian": "ro", |
|
"Danish": "da", |
|
"Hungarian": "hu", |
|
"Tamil": "ta", |
|
"Norwegian": "no", |
|
"Thai": "th", |
|
"Urdu": "ur", |
|
"Croatian": "hr", |
|
"Bulgarian": "bg", |
|
"Lithuanian": "lt", |
|
"Latin": "la", |
|
"Maori": "mi", |
|
"Malayalam": "ml", |
|
"Welsh": "cy", |
|
"Slovak": "sk", |
|
"Telugu": "te", |
|
"Persian": "fa", |
|
"Latvian": "lv", |
|
"Bengali": "bn", |
|
"Serbian": "sr", |
|
"Azerbaijani": "az", |
|
"Slovenian": "sl", |
|
"Kannada": "kn", |
|
"Estonian": "et", |
|
"Macedonian": "mk", |
|
"Breton": "br", |
|
"Basque": "eu", |
|
"Icelandic": "is", |
|
"Armenian": "hy", |
|
"Nepali": "ne", |
|
"Mongolian": "mn", |
|
"Bosnian": "bs", |
|
"Kazakh": "kk", |
|
"Albanian": "sq", |
|
"Swahili": "sw", |
|
"Galician": "gl", |
|
"Marathi": "mr", |
|
"Punjabi": "pa", |
|
"Sinhala": "si", |
|
"Khmer": "km", |
|
"Shona": "sn", |
|
"Yoruba": "yo", |
|
"Somali": "so", |
|
"Afrikaans": "af", |
|
"Occitan": "oc", |
|
"Georgian": "ka", |
|
"Belarusian": "be", |
|
"Tajik": "tg", |
|
"Sindhi": "sd", |
|
"Gujarati": "gu", |
|
"Amharic": "am", |
|
"Yiddish": "yi", |
|
"Lao": "lo", |
|
"Uzbek": "uz", |
|
"Faroese": "fo", |
|
"Haitian Creole": "ht", |
|
"Pashto": "ps", |
|
"Turkmen": "tk", |
|
"Nynorsk": "nn", |
|
"Maltese": "mt", |
|
"Sanskrit": "sa", |
|
"Luxembourgish": "lb", |
|
"Burmese": "my", |
|
"Tibetan": "bo", |
|
"Tagalog": "tl", |
|
"Malagasy": "mg", |
|
"Assamese": "as", |
|
"Tatar": "tt", |
|
"Hawaiian": "haw", |
|
"Lingala": "ln", |
|
"Hausa": "ha", |
|
"Bashkir": "ba", |
|
"Javanese": "jw", |
|
"Sundanese": "su", |
|
} |
|
|
|
|
|
CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()} |
|
|
|
|
|
device, torch_dtype = ("cuda", "float32") if torch.cuda.is_available() else ("cpu", "int8") |
|
|
|
def detect_language(audio_file): |
|
"""Detect the language of the audio file.""" |
|
|
|
model = whisper.load_model("base") |
|
|
|
|
|
audio = AudioSegment.from_file(audio_file) |
|
audio = audio.set_frame_rate(16000).set_channels(1) |
|
processed_audio_path = "processed_audio.wav" |
|
audio.export(processed_audio_path, format="wav") |
|
|
|
|
|
result = model.transcribe(processed_audio_path, task="detect_language", fp16=False) |
|
detected_language_code = result.get("language", "unknown") |
|
|
|
|
|
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language") |
|
|
|
|
|
os.remove(processed_audio_path) |
|
|
|
return f"Detected Language: {detected_language}" |
|
|
|
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"): |
|
"""Transcribe the audio file.""" |
|
|
|
audio = AudioSegment.from_file(audio_file) |
|
audio = audio.set_frame_rate(16000).set_channels(1) |
|
processed_audio_path = "processed_audio.wav" |
|
audio.export(processed_audio_path, format="wav") |
|
|
|
|
|
if language in FINE_TUNED_MODELS: |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
transcribe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=FINE_TUNED_MODELS[language]["model"], |
|
chunk_length_s=30, |
|
device=device |
|
) |
|
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids( |
|
language=FINE_TUNED_MODELS[language]["language"], |
|
task="transcribe" |
|
) |
|
result = transcribe(processed_audio_path) |
|
transcription = result["text"] |
|
detected_language = language |
|
else: |
|
|
|
if model_size == "Systran Faster Whisper Large v3": |
|
|
|
model = WhisperModel(MODELS[model_size], device=device, compute_type=torch_dtype) |
|
segments, info = model.transcribe( |
|
processed_audio_path, |
|
task="transcribe", |
|
word_timestamps=True, |
|
repetition_penalty=1.1, |
|
temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0], |
|
) |
|
transcription = " ".join([segment.text for segment in segments]) |
|
detected_language_code = info.language |
|
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language") |
|
else: |
|
|
|
model = whisper.load_model(MODELS[model_size]) |
|
|
|
|
|
if language == "Auto Detect": |
|
result = model.transcribe(processed_audio_path, fp16=False) |
|
detected_language_code = result.get("language", "unknown") |
|
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language") |
|
else: |
|
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") |
|
result = model.transcribe(processed_audio_path, language=language_code, fp16=False) |
|
detected_language = language |
|
|
|
transcription = result["text"] |
|
|
|
|
|
os.remove(processed_audio_path) |
|
|
|
|
|
return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Audio Transcription and Language Detection") |
|
|
|
with gr.Tab("Detect Language"): |
|
gr.Markdown("Upload an audio file to detect its language.") |
|
detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File") |
|
detect_language_output = gr.Textbox(label="Detected Language") |
|
detect_button = gr.Button("Detect Language") |
|
|
|
with gr.Tab("Transcribe Audio"): |
|
gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.") |
|
transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File") |
|
language_dropdown = gr.Dropdown( |
|
choices=list(LANGUAGE_NAME_TO_CODE.keys()), |
|
label="Select Language", |
|
value="Auto Detect" |
|
) |
|
model_dropdown = gr.Dropdown( |
|
choices=list(MODELS.keys()), |
|
label="Select Model", |
|
value="Base (Faster)", |
|
interactive=True |
|
) |
|
transcribe_output = gr.Textbox(label="Transcription and Detected Language") |
|
transcribe_button = gr.Button("Transcribe Audio") |
|
|
|
|
|
detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output) |
|
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output) |
|
|
|
|
|
demo.launch() |