Athspi commited on
Commit
8d2b72a
·
verified ·
1 Parent(s): 0e08e04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -151,27 +151,33 @@ def detect_language(audio_file):
151
  try:
152
  # Convert audio to WAV format
153
  wav_path = convert_to_wav(audio_file)
 
154
 
155
  # Define device and compute type for faster-whisper
156
  device = "cuda" if torch.cuda.is_available() else "cpu"
157
  compute_type = "float32" if device == "cuda" else "int8"
 
158
 
159
  # Load the faster-whisper model for language detection
160
  model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
 
161
 
162
  # Detect the language using faster-whisper
163
  segments, info = model.transcribe(wav_path, task="translate", language=None)
164
  detected_language_code = info.language
 
165
 
166
  # Get the full language name from the code
167
  detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
 
168
 
169
  # Clean up temporary WAV file
170
  os.remove(wav_path)
 
171
 
172
  return f"Detected Language: {detected_language}"
173
  except Exception as e:
174
- logger.error(f"Error in detect_language: {str(e)}")
175
  return f"Error: {str(e)}"
176
 
177
  def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
 
151
  try:
152
  # Convert audio to WAV format
153
  wav_path = convert_to_wav(audio_file)
154
+ logger.info(f"Audio file converted to WAV: {wav_path}")
155
 
156
  # Define device and compute type for faster-whisper
157
  device = "cuda" if torch.cuda.is_available() else "cpu"
158
  compute_type = "float32" if device == "cuda" else "int8"
159
+ logger.info(f"Using device: {device}, compute_type: {compute_type}")
160
 
161
  # Load the faster-whisper model for language detection
162
  model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
163
+ logger.info("Faster-Whisper model loaded successfully.")
164
 
165
  # Detect the language using faster-whisper
166
  segments, info = model.transcribe(wav_path, task="translate", language=None)
167
  detected_language_code = info.language
168
+ logger.info(f"Detected language code: {detected_language_code}")
169
 
170
  # Get the full language name from the code
171
  detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
172
+ logger.info(f"Detected language: {detected_language}")
173
 
174
  # Clean up temporary WAV file
175
  os.remove(wav_path)
176
+ logger.info("Temporary WAV file removed.")
177
 
178
  return f"Detected Language: {detected_language}"
179
  except Exception as e:
180
+ logger.error(f"Error in detect_language: {str(e)}", exc_info=True)
181
  return f"Error: {str(e)}"
182
 
183
  def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):