Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
-
import torch
|
4 |
import os
|
5 |
from pydub import AudioSegment
|
6 |
-
from
|
|
|
|
|
7 |
|
8 |
# Mapping of model names to Whisper model sizes
|
9 |
MODELS = {
|
@@ -14,12 +15,8 @@ MODELS = {
|
|
14 |
"Large (Most Accurate)": "large"
|
15 |
}
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
"Arabic": {
|
20 |
-
"model": "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
21 |
-
}
|
22 |
-
}
|
23 |
|
24 |
# Mapping of full language names to language codes
|
25 |
LANGUAGE_NAME_TO_CODE = {
|
@@ -87,7 +84,7 @@ LANGUAGE_NAME_TO_CODE = {
|
|
87 |
"Galician": "gl",
|
88 |
"Marathi": "mr",
|
89 |
"Punjabi": "pa",
|
90 |
-
"Sinhala": "si",
|
91 |
"Khmer": "km",
|
92 |
"Shona": "sn",
|
93 |
"Yoruba": "yo",
|
@@ -125,76 +122,92 @@ LANGUAGE_NAME_TO_CODE = {
|
|
125 |
"Sundanese": "su",
|
126 |
}
|
127 |
|
128 |
-
def
|
129 |
-
"""Transcribe
|
130 |
-
|
|
|
|
|
131 |
audio = AudioSegment.from_file(audio_file)
|
132 |
audio = audio.set_frame_rate(16000).set_channels(1)
|
133 |
processed_audio_path = "processed_audio.wav"
|
134 |
audio.export(processed_audio_path, format="wav")
|
135 |
|
136 |
-
#
|
137 |
-
if language
|
138 |
-
|
139 |
-
|
140 |
-
transcriptions = model.transcribe([processed_audio_path])
|
141 |
-
transcription = transcriptions[0]["transcription"]
|
142 |
-
detected_language = language
|
143 |
else:
|
144 |
-
#
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
if language == "Auto Detect":
|
149 |
-
result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
|
150 |
-
detected_language = result.get("language", "unknown")
|
151 |
-
else:
|
152 |
-
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
|
153 |
-
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
154 |
-
detected_language = language_code
|
155 |
-
|
156 |
-
transcription = result["text"]
|
157 |
-
|
158 |
# Clean up processed audio file
|
159 |
os.remove(processed_audio_path)
|
160 |
|
161 |
# Return transcription and detected language
|
162 |
-
return f"Detected Language: {detected_language}\n\nTranscription:\n{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
# Define the Gradio interface
|
165 |
with gr.Blocks() as demo:
|
166 |
-
gr.Markdown("# Audio Transcription
|
167 |
|
168 |
with gr.Tab("Transcribe Audio"):
|
169 |
gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
|
170 |
transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
171 |
language_dropdown = gr.Dropdown(
|
172 |
-
choices=list(LANGUAGE_NAME_TO_CODE.keys()),
|
173 |
label="Select Language",
|
174 |
value="Auto Detect"
|
175 |
)
|
176 |
model_dropdown = gr.Dropdown(
|
177 |
-
choices=list(MODELS.keys()),
|
178 |
label="Select Model",
|
179 |
-
value="Base (Faster)"
|
180 |
-
interactive=True # Allow model selection by default
|
181 |
)
|
182 |
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
|
183 |
transcribe_button = gr.Button("Transcribe Audio")
|
184 |
|
185 |
# Update model dropdown based on language selection
|
186 |
def update_model_dropdown(language):
|
187 |
-
if language
|
188 |
-
|
189 |
-
return gr.Dropdown(choices=["HuggingSound Model"], value="HuggingSound Model", interactive=False)
|
190 |
else:
|
191 |
-
|
192 |
-
return gr.Dropdown(choices=list(MODELS.keys()), value="Base (Faster)", interactive=True)
|
193 |
|
194 |
language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
|
195 |
-
|
196 |
-
# Link button to function
|
197 |
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
|
198 |
|
199 |
# Launch the Gradio interface
|
200 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
|
|
3 |
import os
|
4 |
from pydub import AudioSegment
|
5 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
6 |
+
import torchaudio
|
7 |
+
import torch
|
8 |
|
9 |
# Mapping of model names to Whisper model sizes
|
10 |
MODELS = {
|
|
|
15 |
"Large (Most Accurate)": "large"
|
16 |
}
|
17 |
|
18 |
+
# Fine-tuned Sinhala model (using Hugging Face Transformers)
|
19 |
+
SINHALA_MODEL = "IAmNotAnanth/wav2vec2-large-xls-r-300m-sinhala"
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Mapping of full language names to language codes
|
22 |
LANGUAGE_NAME_TO_CODE = {
|
|
|
84 |
"Galician": "gl",
|
85 |
"Marathi": "mr",
|
86 |
"Punjabi": "pa",
|
87 |
+
"Sinhala": "si",
|
88 |
"Khmer": "km",
|
89 |
"Shona": "sn",
|
90 |
"Yoruba": "yo",
|
|
|
122 |
"Sundanese": "su",
|
123 |
}
|
124 |
|
125 |
+
def transcribe_with_whisper(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
126 |
+
"""Transcribe using OpenAI's Whisper models."""
|
127 |
+
model = whisper.load_model(MODELS[model_size])
|
128 |
+
|
129 |
+
# Convert audio to 16kHz mono for compatibility with Whisper
|
130 |
audio = AudioSegment.from_file(audio_file)
|
131 |
audio = audio.set_frame_rate(16000).set_channels(1)
|
132 |
processed_audio_path = "processed_audio.wav"
|
133 |
audio.export(processed_audio_path, format="wav")
|
134 |
|
135 |
+
# Transcribe the audio
|
136 |
+
if language == "Auto Detect":
|
137 |
+
result = model.transcribe(processed_audio_path, fp16=False)
|
138 |
+
detected_language = result.get("language", "unknown")
|
|
|
|
|
|
|
139 |
else:
|
140 |
+
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
|
141 |
+
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
142 |
+
detected_language = language_code
|
143 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# Clean up processed audio file
|
145 |
os.remove(processed_audio_path)
|
146 |
|
147 |
# Return transcription and detected language
|
148 |
+
return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
|
149 |
+
|
150 |
+
def transcribe_with_sinhala_model(audio_file):
|
151 |
+
"""Transcribe using the fine-tuned Sinhala Wav2Vec2 model."""
|
152 |
+
processor = AutoProcessor.from_pretrained(SINHALA_MODEL)
|
153 |
+
model = AutoModelForCTC.from_pretrained(SINHALA_MODEL)
|
154 |
+
|
155 |
+
# Convert audio to 16kHz mono
|
156 |
+
audio = AudioSegment.from_file(audio_file)
|
157 |
+
audio = audio.set_frame_rate(16000).set_channels(1)
|
158 |
+
processed_audio_path = "processed_audio.wav"
|
159 |
+
audio.export(processed_audio_path, format="wav")
|
160 |
+
|
161 |
+
# Load and process audio
|
162 |
+
audio_input, _ = torchaudio.load(processed_audio_path)
|
163 |
+
input_values = processor(audio_input.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
|
164 |
+
logits = model(input_values).logits
|
165 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
166 |
+
|
167 |
+
# Decode prediction
|
168 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
169 |
+
|
170 |
+
# Clean up processed audio file
|
171 |
+
os.remove(processed_audio_path)
|
172 |
+
|
173 |
+
return f"Transcription:\n{transcription}"
|
174 |
+
|
175 |
+
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
176 |
+
"""Wrapper to select the correct transcription method."""
|
177 |
+
if language == "Sinhala":
|
178 |
+
return transcribe_with_sinhala_model(audio_file)
|
179 |
+
else:
|
180 |
+
return transcribe_with_whisper(audio_file, language, model_size)
|
181 |
|
182 |
# Define the Gradio interface
|
183 |
with gr.Blocks() as demo:
|
184 |
+
gr.Markdown("# Audio Transcription and Language Detection")
|
185 |
|
186 |
with gr.Tab("Transcribe Audio"):
|
187 |
gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
|
188 |
transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
189 |
language_dropdown = gr.Dropdown(
|
190 |
+
choices=list(LANGUAGE_NAME_TO_CODE.keys()),
|
191 |
label="Select Language",
|
192 |
value="Auto Detect"
|
193 |
)
|
194 |
model_dropdown = gr.Dropdown(
|
195 |
+
choices=list(MODELS.keys()),
|
196 |
label="Select Model",
|
197 |
+
value="Base (Faster)"
|
|
|
198 |
)
|
199 |
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
|
200 |
transcribe_button = gr.Button("Transcribe Audio")
|
201 |
|
202 |
# Update model dropdown based on language selection
|
203 |
def update_model_dropdown(language):
|
204 |
+
if language == "Sinhala":
|
205 |
+
return gr.Dropdown(interactive=False, value="Fine-Tuned Sinhala Model")
|
|
|
206 |
else:
|
207 |
+
return gr.Dropdown(choices=list(MODELS.keys()), interactive=True, value="Base (Faster)")
|
|
|
208 |
|
209 |
language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
|
|
|
|
|
210 |
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
|
211 |
|
212 |
# Launch the Gradio interface
|
213 |
+
demo.launch()
|