Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -137,14 +137,11 @@ def transcribe_with_whisper(audio_file, language="Auto Detect", model_size="Base
|
|
137 |
result = model.transcribe(processed_audio_path, fp16=False)
|
138 |
detected_language = result.get("language", "unknown")
|
139 |
else:
|
140 |
-
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")
|
141 |
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
142 |
detected_language = language_code
|
143 |
|
144 |
-
# Clean up processed audio file
|
145 |
os.remove(processed_audio_path)
|
146 |
-
|
147 |
-
# Return transcription and detected language
|
148 |
return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
|
149 |
|
150 |
def transcribe_with_sinhala_model(audio_file):
|
@@ -152,24 +149,18 @@ def transcribe_with_sinhala_model(audio_file):
|
|
152 |
processor = AutoProcessor.from_pretrained(SINHALA_MODEL)
|
153 |
model = AutoModelForCTC.from_pretrained(SINHALA_MODEL)
|
154 |
|
155 |
-
# Convert audio to 16kHz mono
|
156 |
audio = AudioSegment.from_file(audio_file)
|
157 |
audio = audio.set_frame_rate(16000).set_channels(1)
|
158 |
processed_audio_path = "processed_audio.wav"
|
159 |
audio.export(processed_audio_path, format="wav")
|
160 |
|
161 |
-
# Load and process audio
|
162 |
audio_input, _ = torchaudio.load(processed_audio_path)
|
163 |
input_values = processor(audio_input.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
|
164 |
logits = model(input_values).logits
|
165 |
predicted_ids = torch.argmax(logits, dim=-1)
|
166 |
|
167 |
-
# Decode prediction
|
168 |
transcription = processor.batch_decode(predicted_ids)[0]
|
169 |
-
|
170 |
-
# Clean up processed audio file
|
171 |
os.remove(processed_audio_path)
|
172 |
-
|
173 |
return f"Transcription:\n{transcription}"
|
174 |
|
175 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
@@ -179,35 +170,30 @@ def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faste
|
|
179 |
else:
|
180 |
return transcribe_with_whisper(audio_file, language, model_size)
|
181 |
|
182 |
-
#
|
183 |
with gr.Blocks() as demo:
|
184 |
gr.Markdown("# Audio Transcription and Language Detection")
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
)
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
|
200 |
-
transcribe_button = gr.Button("Transcribe Audio")
|
201 |
|
202 |
-
# Update model dropdown based on language selection
|
203 |
def update_model_dropdown(language):
|
204 |
if language == "Sinhala":
|
205 |
-
return gr.
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
|
210 |
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
|
211 |
|
212 |
-
# Launch the Gradio interface
|
213 |
demo.launch()
|
|
|
137 |
result = model.transcribe(processed_audio_path, fp16=False)
|
138 |
detected_language = result.get("language", "unknown")
|
139 |
else:
|
140 |
+
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")
|
141 |
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
142 |
detected_language = language_code
|
143 |
|
|
|
144 |
os.remove(processed_audio_path)
|
|
|
|
|
145 |
return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
|
146 |
|
147 |
def transcribe_with_sinhala_model(audio_file):
|
|
|
149 |
processor = AutoProcessor.from_pretrained(SINHALA_MODEL)
|
150 |
model = AutoModelForCTC.from_pretrained(SINHALA_MODEL)
|
151 |
|
|
|
152 |
audio = AudioSegment.from_file(audio_file)
|
153 |
audio = audio.set_frame_rate(16000).set_channels(1)
|
154 |
processed_audio_path = "processed_audio.wav"
|
155 |
audio.export(processed_audio_path, format="wav")
|
156 |
|
|
|
157 |
audio_input, _ = torchaudio.load(processed_audio_path)
|
158 |
input_values = processor(audio_input.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
|
159 |
logits = model(input_values).logits
|
160 |
predicted_ids = torch.argmax(logits, dim=-1)
|
161 |
|
|
|
162 |
transcription = processor.batch_decode(predicted_ids)[0]
|
|
|
|
|
163 |
os.remove(processed_audio_path)
|
|
|
164 |
return f"Transcription:\n{transcription}"
|
165 |
|
166 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
|
|
170 |
else:
|
171 |
return transcribe_with_whisper(audio_file, language, model_size)
|
172 |
|
173 |
+
# Gradio interface
|
174 |
with gr.Blocks() as demo:
|
175 |
gr.Markdown("# Audio Transcription and Language Detection")
|
176 |
|
177 |
+
transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
178 |
+
language_dropdown = gr.Dropdown(
|
179 |
+
choices=list(LANGUAGE_NAME_TO_CODE.keys()),
|
180 |
+
label="Select Language",
|
181 |
+
value="Auto Detect"
|
182 |
+
)
|
183 |
+
model_dropdown = gr.Dropdown(
|
184 |
+
choices=list(MODELS.keys()),
|
185 |
+
label="Select Whisper Model",
|
186 |
+
value="Base (Faster)"
|
187 |
+
)
|
188 |
+
transcribe_output = gr.Textbox(label="Transcription")
|
189 |
+
transcribe_button = gr.Button("Transcribe Audio")
|
|
|
|
|
190 |
|
|
|
191 |
def update_model_dropdown(language):
|
192 |
if language == "Sinhala":
|
193 |
+
return gr.update(interactive=False, value="Base (Faster)") # Disable dropdown
|
194 |
+
return gr.update(interactive=True, value="Base (Faster)")
|
195 |
+
|
|
|
196 |
language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
|
197 |
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
|
198 |
|
|
|
199 |
demo.launch()
|