Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
|
|
2 |
import whisper
|
3 |
import os
|
4 |
from pydub import AudioSegment
|
|
|
|
|
5 |
|
6 |
# Mapping of model names to Whisper model sizes
|
7 |
MODELS = {
|
@@ -13,7 +15,7 @@ MODELS = {
|
|
13 |
}
|
14 |
|
15 |
# Fine-tuned Sinhala model
|
16 |
-
SINHALA_MODEL = "
|
17 |
|
18 |
# Mapping of full language names to language codes
|
19 |
LANGUAGE_NAME_TO_CODE = {
|
@@ -119,15 +121,21 @@ LANGUAGE_NAME_TO_CODE = {
|
|
119 |
"Sundanese": "su",
|
120 |
}
|
121 |
|
|
|
|
|
|
|
|
|
122 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
123 |
"""Transcribe the audio file."""
|
124 |
# Load the appropriate model
|
125 |
if language == "Sinhala":
|
126 |
# Use the fine-tuned Sinhala model
|
127 |
-
model =
|
|
|
128 |
else:
|
129 |
# Use the selected Whisper model
|
130 |
model = whisper.load_model(MODELS[model_size])
|
|
|
131 |
|
132 |
# Convert audio to 16kHz mono for better compatibility with Whisper
|
133 |
audio = AudioSegment.from_file(audio_file)
|
@@ -137,18 +145,38 @@ def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faste
|
|
137 |
|
138 |
# Transcribe the audio
|
139 |
if language == "Auto Detect":
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
else:
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
# Clean up processed audio file
|
148 |
os.remove(processed_audio_path)
|
149 |
|
150 |
# Return transcription and detected language
|
151 |
-
return f"Detected Language: {detected_language}\n\nTranscription:\n{
|
152 |
|
153 |
# Define the Gradio interface
|
154 |
with gr.Blocks() as demo:
|
|
|
2 |
import whisper
|
3 |
import os
|
4 |
from pydub import AudioSegment
|
5 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
6 |
+
import torch
|
7 |
|
8 |
# Mapping of model names to Whisper model sizes
|
9 |
MODELS = {
|
|
|
15 |
}
|
16 |
|
17 |
# Fine-tuned Sinhala model
|
18 |
+
SINHALA_MODEL = "Subhaka/whisper-small-Sinhala-Fine_Tune"
|
19 |
|
20 |
# Mapping of full language names to language codes
|
21 |
LANGUAGE_NAME_TO_CODE = {
|
|
|
121 |
"Sundanese": "su",
|
122 |
}
|
123 |
|
124 |
+
# Load the fine-tuned Sinhala model and processor
|
125 |
+
processor = AutoProcessor.from_pretrained(SINHALA_MODEL)
|
126 |
+
sinhala_model = AutoModelForSpeechSeq2Seq.from_pretrained(SINHALA_MODEL)
|
127 |
+
|
128 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
129 |
"""Transcribe the audio file."""
|
130 |
# Load the appropriate model
|
131 |
if language == "Sinhala":
|
132 |
# Use the fine-tuned Sinhala model
|
133 |
+
model = sinhala_model
|
134 |
+
model_processor = processor
|
135 |
else:
|
136 |
# Use the selected Whisper model
|
137 |
model = whisper.load_model(MODELS[model_size])
|
138 |
+
model_processor = None
|
139 |
|
140 |
# Convert audio to 16kHz mono for better compatibility with Whisper
|
141 |
audio = AudioSegment.from_file(audio_file)
|
|
|
145 |
|
146 |
# Transcribe the audio
|
147 |
if language == "Auto Detect":
|
148 |
+
if model_processor:
|
149 |
+
# Use the fine-tuned Sinhala model for transcription
|
150 |
+
inputs = model_processor(processed_audio_path, return_tensors="pt", sampling_rate=16000)
|
151 |
+
with torch.no_grad():
|
152 |
+
generated_ids = model.generate(inputs.input_features)
|
153 |
+
transcription = model_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
154 |
+
detected_language = "si"
|
155 |
+
else:
|
156 |
+
# Use Whisper for auto-detection
|
157 |
+
result = model.transcribe(processed_audio_path, fp16=False)
|
158 |
+
transcription = result["text"]
|
159 |
+
detected_language = result.get("language", "unknown")
|
160 |
else:
|
161 |
+
if model_processor:
|
162 |
+
# Use the fine-tuned Sinhala model for transcription
|
163 |
+
inputs = model_processor(processed_audio_path, return_tensors="pt", sampling_rate=16000)
|
164 |
+
with torch.no_grad():
|
165 |
+
generated_ids = model.generate(inputs.input_features)
|
166 |
+
transcription = model_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
167 |
+
detected_language = "si"
|
168 |
+
else:
|
169 |
+
# Use Whisper for transcription with the selected language
|
170 |
+
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")
|
171 |
+
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
172 |
+
transcription = result["text"]
|
173 |
+
detected_language = language_code
|
174 |
|
175 |
# Clean up processed audio file
|
176 |
os.remove(processed_audio_path)
|
177 |
|
178 |
# Return transcription and detected language
|
179 |
+
return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"
|
180 |
|
181 |
# Define the Gradio interface
|
182 |
with gr.Blocks() as demo:
|