Athspi commited on
Commit
fce1940
·
verified ·
1 Parent(s): c53ccee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -54
app.py CHANGED
@@ -3,50 +3,17 @@ import whisper
3
  import os
4
  from pydub import AudioSegment
5
 
6
- # Load the base Whisper model
7
- base_model = whisper.load_model("base") # Default model for non-Sinhala languages
8
-
9
- # Load the fine-tuned Sinhala model (if available)
10
- sinhala_model = None
11
- try:
12
- from transformers import WhisperForConditionalGeneration, WhisperProcessor
13
- sinhala_model = WhisperForConditionalGeneration.from_pretrained("Subhaka/whisper-small-Sinhala-Fine_Tune")
14
- sinhala_processor = WhisperProcessor.from_pretrained("Subhaka/whisper-small-Sinhala-Fine_Tune")
15
- except Exception as e:
16
- print("Failed to load fine-tuned Sinhala model. Falling back to the base model.")
17
- print(f"Error: {e}")
18
 
19
- def transcribe_audio(audio_file, language="Auto Detect"):
20
- # Convert audio to 16kHz mono for better compatibility with Whisper
21
- audio = AudioSegment.from_file(audio_file)
22
- audio = audio.set_frame_rate(16000).set_channels(1)
23
- processed_audio_path = "processed_audio.wav"
24
- audio.export(processed_audio_path, format="wav")
25
-
26
- # Load the appropriate model based on the selected language
27
- if language == "Sinhala" and sinhala_model is not None:
28
- print("Using fine-tuned Sinhala model.")
29
- model = sinhala_model
30
- processor = sinhala_processor
31
- else:
32
- print("Using base Whisper model.")
33
- model = base_model
34
- processor = None
35
-
36
- # Transcribe the audio
37
- if language == "Auto Detect":
38
- result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
39
- detected_language = result.get("language", "unknown")
40
- else:
41
- language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
42
- result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
43
- detected_language = language_code
44
-
45
- # Clean up processed audio file
46
- os.remove(processed_audio_path)
47
-
48
- # Return transcription and detected language
49
- return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
50
 
51
  # Mapping of full language names to language codes
52
  LANGUAGE_NAME_TO_CODE = {
@@ -152,21 +119,69 @@ LANGUAGE_NAME_TO_CODE = {
152
  "Sundanese": "su",
153
  }
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  # Define the Gradio interface
156
- iface = gr.Interface(
157
- fn=transcribe_audio,
158
- inputs=[
159
- gr.Audio(type="filepath", label="Upload Audio File"),
160
- gr.Dropdown(
 
 
161
  choices=list(LANGUAGE_NAME_TO_CODE.keys()), # Full language names
162
  label="Select Language",
163
  value="Auto Detect"
164
  )
165
- ],
166
- outputs=gr.Textbox(label="Transcription and Detected Language"),
167
- title="Audio Transcription with Language Selection",
168
- description="Upload an audio file and select a language (or choose 'Auto Detect'). For Sinhala, a fine-tuned model will be used automatically."
169
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
  # Launch the Gradio interface
172
- iface.launch()
 
3
  import os
4
  from pydub import AudioSegment
5
 
6
+ # Mapping of model names to Whisper model sizes
7
+ MODELS = {
8
+ "Tiny (Fastest)": "tiny",
9
+ "Base (Faster)": "base",
10
+ "Small (Balanced)": "small",
11
+ "Medium (Accurate)": "medium",
12
+ "Large (Most Accurate)": "large"
13
+ }
 
 
 
 
14
 
15
+ # Fine-tuned Sinhala model
16
+ SINHALA_MODEL = "malakazzz/Subhaka-whisper-small-Sinhala-Fine_Tune"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  # Mapping of full language names to language codes
19
  LANGUAGE_NAME_TO_CODE = {
 
119
  "Sundanese": "su",
120
  }
121
 
122
+ def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
123
+ """Transcribe the audio file."""
124
+ # Load the appropriate model
125
+ if language == "Sinhala":
126
+ # Use the fine-tuned Sinhala model
127
+ model = gr.load(SINHALA_MODEL)
128
+ else:
129
+ # Use the selected Whisper model
130
+ model = whisper.load_model(MODELS[model_size])
131
+
132
+ # Convert audio to 16kHz mono for better compatibility with Whisper
133
+ audio = AudioSegment.from_file(audio_file)
134
+ audio = audio.set_frame_rate(16000).set_channels(1)
135
+ processed_audio_path = "processed_audio.wav"
136
+ audio.export(processed_audio_path, format="wav")
137
+
138
+ # Transcribe the audio
139
+ if language == "Auto Detect":
140
+ result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
141
+ detected_language = result.get("language", "unknown")
142
+ else:
143
+ language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
144
+ result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
145
+ detected_language = language_code
146
+
147
+ # Clean up processed audio file
148
+ os.remove(processed_audio_path)
149
+
150
+ # Return transcription and detected language
151
+ return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
152
+
153
  # Define the Gradio interface
154
+ with gr.Blocks() as demo:
155
+ gr.Markdown("# Audio Transcription and Language Detection")
156
+
157
+ with gr.Tab("Transcribe Audio"):
158
+ gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
159
+ transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
160
+ language_dropdown = gr.Dropdown(
161
  choices=list(LANGUAGE_NAME_TO_CODE.keys()), # Full language names
162
  label="Select Language",
163
  value="Auto Detect"
164
  )
165
+ model_dropdown = gr.Dropdown(
166
+ choices=list(MODELS.keys()), # Model options
167
+ label="Select Model",
168
+ value="Base (Faster)", # Default to "Base" model
169
+ interactive=True # Allow model selection by default
170
+ )
171
+ transcribe_output = gr.Textbox(label="Transcription and Detected Language")
172
+ transcribe_button = gr.Button("Transcribe Audio")
173
+
174
+ # Update model dropdown based on language selection
175
+ def update_model_dropdown(language):
176
+ if language == "Sinhala":
177
+ return gr.Dropdown(interactive=False, value="Fine-Tuned Sinhala Model")
178
+ else:
179
+ return gr.Dropdown(choices=list(MODELS.keys()), interactive=True, value="Base (Faster)")
180
+
181
+ language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
182
+
183
+ # Link button to function
184
+ transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
185
 
186
  # Launch the Gradio interface
187
+ demo.launch()