Athspi-promax / app.py
Athspi's picture
Update app.py
04c06dd verified
raw
history blame
4.37 kB
import os
import time
import json
import httpx
import gradio as gr
from huggingface_hub import InferenceClient
from openai import OpenAI
from dotenv import load_dotenv
# Load API keys from .env file
load_dotenv()
HF_API_KEY = os.getenv("HF_API_KEY")
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
# Initialize Hugging Face Clients
hf_client = InferenceClient(provider="hf-inference", api_key=HF_API_KEY)
# Initialize OpenRouter DeepSeek Client
openrouter_client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY
)
# Query Hugging Face Models
def query_huggingface_model(user_input, model_name):
try:
messages = [{"role": "user", "content": user_input}]
completion = hf_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=500
)
return completion.choices[0].message["content"]
except Exception as e:
return f"Error querying {model_name}: {str(e)}"
# Query DeepSeek-R1 (OpenRouter)
def query_deepseek(user_input):
try:
completion = openrouter_client.chat.completions.create(
model="deepseek/deepseek-r1:free",
messages=[{"role": "user", "content": user_input}]
)
return completion.choices[0].message.content
except Exception as e:
return f"Error querying DeepSeek: {str(e)}"
# Function to refine responses using DeepSeek
def refine_response(user_input):
try:
# Get responses from all three models
gemma_response = query_huggingface_model(user_input, "google/gemma-2-27b-it")
llama_response = query_huggingface_model(user_input, "meta-llama/Llama-3.3-70B-Instruct")
deepseek_response = query_deepseek(user_input)
# If any response is missing, return the available ones
responses = {
"Gemma": gemma_response.strip(),
"Llama": llama_response.strip(),
"DeepSeek": deepseek_response.strip()
}
valid_responses = {k: v for k, v in responses.items() if v}
if len(valid_responses) < 2:
return "\n\n".join(f"{k} Response: {v}" for k, v in valid_responses.items())
# Prepare refinement prompt
improvement_prompt = f"""
Here are three AI-generated responses:
Response 1 (Gemma): {gemma_response}
Response 2 (Llama 3.3): {llama_response}
Response 3 (DeepSeek): {deepseek_response}
Please combine the best elements of all three, improve clarity, and provide a final refined answer.
"""
# Retry loop for OpenRouter API
max_retries = 3
for attempt in range(max_retries):
try:
response = httpx.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json"
},
json={
"model": "deepseek/deepseek-r1:free",
"messages": [{"role": "user", "content": improvement_prompt}]
},
timeout=30
)
print(f"Attempt {attempt + 1}: OpenRouter Response:", response.text)
response_json = response.json()
refined_content = response_json["choices"][0]["message"]["content"]
if refined_content.strip():
return refined_content
else:
print("Received empty response from DeepSeek, retrying...")
time.sleep(2)
except Exception as e:
print(f"Error on attempt {attempt + 1}: {str(e)}")
time.sleep(2)
return f"Refinement failed. Here’s the best available response:\n\n{max(valid_responses.values(), key=len)}"
except Exception as e:
return f"Error refining response: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=refine_response,
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."),
outputs="text",
title="Multi-Model AI Enhancer",
description="Get responses from Gemma, Llama 3.3, and DeepSeek. Then receive an improved final answer."
)
# Launch app
iface.launch()