Spaces:
Sleeping
Sleeping
import os | |
import json | |
import httpx | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
# Load API keys from .env file | |
load_dotenv() | |
HF_API_KEY = os.getenv("HF_API_KEY") | |
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY") | |
# Initialize Hugging Face Gemma Client | |
hf_client = InferenceClient( | |
provider="hf-inference", | |
api_key=HF_API_KEY | |
) | |
# Initialize OpenRouter DeepSeek Client | |
openrouter_client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=OPENROUTER_API_KEY | |
) | |
# Function to query Gemma-2-27B (Hugging Face) | |
def query_gemma(user_input): | |
try: | |
messages = [{"role": "user", "content": user_input}] | |
completion = hf_client.chat.completions.create( | |
model="google/gemma-2-27b-it", | |
messages=messages, | |
max_tokens=500 | |
) | |
return completion.choices[0].message["content"] | |
except Exception as e: | |
return f"Error querying Gemma: {str(e)}" | |
# Function to query DeepSeek-R1 (OpenRouter) | |
def query_deepseek(user_input): | |
try: | |
completion = openrouter_client.chat.completions.create( | |
model="deepseek/deepseek-r1:free", | |
messages=[{"role": "user", "content": user_input}] | |
) | |
return completion.choices[0].message.content | |
except Exception as e: | |
return f"Error querying DeepSeek: {str(e)}" | |
# Function to refine responses using DeepSeek | |
def refine_response(user_input): | |
try: | |
# Get responses from both models | |
gemma_response = query_gemma(user_input) | |
deepseek_response = query_deepseek(user_input) | |
# If either response failed, return the available one | |
if "Error" in gemma_response: | |
return f"Only DeepSeek Response:\n{deepseek_response}" | |
if "Error" in deepseek_response: | |
return f"Only Gemma Response:\n{gemma_response}" | |
# Prepare refinement prompt | |
improvement_prompt = f""" | |
Here are two AI-generated responses: | |
Response 1 (Gemma): {gemma_response} | |
Response 2 (DeepSeek): {deepseek_response} | |
Please combine the best elements of both, improve clarity, and provide a final refined answer. | |
""" | |
# Send request to OpenRouter | |
response = httpx.post( | |
"https://openrouter.ai/api/v1/chat/completions", | |
headers={ | |
"Authorization": f"Bearer {OPENROUTER_API_KEY}", | |
"Content-Type": "application/json" | |
}, | |
json={ | |
"model": "deepseek/deepseek-r1:free", | |
"messages": [{"role": "user", "content": improvement_prompt}] | |
} | |
) | |
# Print raw response for debugging | |
print("OpenRouter Response:", response.text) | |
# Check if response is valid JSON | |
response_json = response.json() | |
return response_json["choices"][0]["message"]["content"] | |
except Exception as e: | |
return f"Error refining response: {str(e)}" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=refine_response, | |
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."), | |
outputs="text", | |
title="AI Response Enhancer", | |
description="Get responses from both Gemma and DeepSeek, then receive an improved final answer." | |
) | |
# Launch app | |
iface.launch() | |