Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,106 @@
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
# Load API keys from .env file
|
8 |
load_dotenv()
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
def refine_response(user_input):
|
48 |
try:
|
49 |
-
# Get responses
|
50 |
-
gemma_response =
|
51 |
-
llama_response =
|
52 |
-
deepseek_response =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Prepare refinement prompt
|
55 |
improvement_prompt = f"""
|
56 |
Here are three AI-generated responses:
|
57 |
|
58 |
Response 1 (Gemma): {gemma_response}
|
59 |
-
Response 2 (Llama 3.
|
60 |
-
Response 3 (DeepSeek-
|
61 |
|
62 |
-
Please combine the best elements of all three and provide
|
63 |
"""
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
return
|
73 |
|
74 |
except Exception as e:
|
75 |
return f"Error refining response: {str(e)}"
|
@@ -80,7 +111,7 @@ iface = gr.Interface(
|
|
80 |
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."),
|
81 |
outputs="text",
|
82 |
title="Multi-Model AI Enhancer",
|
83 |
-
description="Get responses from Gemma, Llama, and DeepSeek. Then receive an improved answer."
|
84 |
)
|
85 |
|
86 |
# Launch app
|
|
|
1 |
import os
|
2 |
import time
|
3 |
+
import json
|
4 |
import gradio as gr
|
5 |
+
from openai import OpenAI
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
# Load API keys from .env file
|
9 |
load_dotenv()
|
10 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY") # OpenRouter API Key
|
11 |
+
|
12 |
+
# Initialize OpenRouter Client
|
13 |
+
openrouter_client = OpenAI(
|
14 |
+
base_url="https://openrouter.ai/api/v1",
|
15 |
+
api_key=OPENROUTER_API_KEY
|
16 |
+
)
|
17 |
+
|
18 |
+
# Query OpenRouter (Gemma-2-9B)
|
19 |
+
def query_gemma_openrouter(user_input):
|
20 |
+
try:
|
21 |
+
completion = openrouter_client.chat.completions.create(
|
22 |
+
model="google/gemma-2-9b-it:free",
|
23 |
+
messages=[{"role": "user", "content": user_input}]
|
24 |
+
)
|
25 |
+
return completion.choices[0].message.content
|
26 |
+
except Exception as e:
|
27 |
+
return f"Error querying Gemma-2-9B: {str(e)}"
|
28 |
+
|
29 |
+
# Query OpenRouter (Llama-3.2-3B)
|
30 |
+
def query_llama_openrouter(user_input):
|
31 |
+
try:
|
32 |
+
completion = openrouter_client.chat.completions.create(
|
33 |
+
model="meta-llama/llama-3.2-3b-instruct:free",
|
34 |
+
messages=[{"role": "user", "content": user_input}]
|
35 |
+
)
|
36 |
+
return completion.choices[0].message.content
|
37 |
+
except Exception as e:
|
38 |
+
return f"Error querying Llama-3.2-3B: {str(e)}"
|
39 |
+
|
40 |
+
# Query OpenRouter (DeepSeek-R1)
|
41 |
+
def query_deepseek_openrouter(user_input):
|
42 |
+
try:
|
43 |
+
completion = openrouter_client.chat.completions.create(
|
44 |
+
model="deepseek/deepseek-r1:free",
|
45 |
+
messages=[{"role": "user", "content": user_input}]
|
46 |
+
)
|
47 |
+
return completion.choices[0].message.content
|
48 |
+
except Exception as e:
|
49 |
+
return f"Error querying DeepSeek-R1: {str(e)}"
|
50 |
+
|
51 |
+
# Function to refine responses using DeepSeek-R1
|
52 |
def refine_response(user_input):
|
53 |
try:
|
54 |
+
# Get responses from all three models
|
55 |
+
gemma_response = query_gemma_openrouter(user_input)
|
56 |
+
llama_response = query_llama_openrouter(user_input)
|
57 |
+
deepseek_response = query_deepseek_openrouter(user_input)
|
58 |
+
|
59 |
+
# If any response is missing, return the available ones
|
60 |
+
responses = {
|
61 |
+
"Gemma": gemma_response.strip(),
|
62 |
+
"Llama": llama_response.strip(),
|
63 |
+
"DeepSeek-R1": deepseek_response.strip()
|
64 |
+
}
|
65 |
+
valid_responses = {k: v for k, v in responses.items() if v}
|
66 |
+
|
67 |
+
if len(valid_responses) < 2:
|
68 |
+
return "\n\n".join(f"{k} Response: {v}" for k, v in valid_responses.items())
|
69 |
|
70 |
# Prepare refinement prompt
|
71 |
improvement_prompt = f"""
|
72 |
Here are three AI-generated responses:
|
73 |
|
74 |
Response 1 (Gemma): {gemma_response}
|
75 |
+
Response 2 (Llama 3.2): {llama_response}
|
76 |
+
Response 3 (DeepSeek-R1): {deepseek_response}
|
77 |
|
78 |
+
Please combine the best elements of all three, improve clarity, and provide a final refined answer.
|
79 |
"""
|
80 |
|
81 |
+
# Retry loop for DeepSeek-R1 refinement
|
82 |
+
max_retries = 3
|
83 |
+
for attempt in range(max_retries):
|
84 |
+
try:
|
85 |
+
messages = [{"role": "user", "content": improvement_prompt}]
|
86 |
+
refined_completion = openrouter_client.chat.completions.create(
|
87 |
+
model="deepseek/deepseek-r1:free",
|
88 |
+
messages=messages
|
89 |
+
)
|
90 |
+
|
91 |
+
refined_content = refined_completion.choices[0].message.content
|
92 |
+
|
93 |
+
if refined_content.strip():
|
94 |
+
return refined_content
|
95 |
+
else:
|
96 |
+
print("Received empty response from DeepSeek-R1, retrying...")
|
97 |
+
time.sleep(2)
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error on attempt {attempt + 1}: {str(e)}")
|
101 |
+
time.sleep(2)
|
102 |
|
103 |
+
return f"Refinement failed. Here’s the best available response:\n\n{max(valid_responses.values(), key=len)}"
|
104 |
|
105 |
except Exception as e:
|
106 |
return f"Error refining response: {str(e)}"
|
|
|
111 |
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."),
|
112 |
outputs="text",
|
113 |
title="Multi-Model AI Enhancer",
|
114 |
+
description="Get responses from Gemma, Llama-3.2, and DeepSeek-R1. Then receive an improved final answer."
|
115 |
)
|
116 |
|
117 |
# Launch app
|