Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,59 @@
|
|
1 |
-
import os
|
2 |
-
import threading
|
3 |
import gradio as gr
|
|
|
|
|
4 |
from openai import OpenAI
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
|
7 |
-
# Load API keys from .env file
|
8 |
-
load_dotenv(override=True)
|
9 |
|
10 |
-
#
|
11 |
-
API_KEY_LLAMA = os.getenv("OPENROUTER_API_KEY1"
|
12 |
-
API_KEY_GEMMA = os.getenv("OPENROUTER_API_KEY2"
|
13 |
-
API_KEY_DEEPSEEK1 = os.getenv("OPENROUTER_API_KEY3"
|
14 |
-
API_KEY_DEEPSEEK2 = os.getenv("OPENROUTER_API_KEY4"
|
15 |
|
16 |
-
#
|
17 |
-
print(f"Llama API Key: {API_KEY_LLAMA[:5]}...") # Show only first 5 characters
|
18 |
-
print(f"Gemma API Key: {API_KEY_GEMMA[:5]}...")
|
19 |
-
print(f"DeepSeek API Key 1: {API_KEY_DEEPSEEK1[:5]}...")
|
20 |
-
print(f"DeepSeek API Key 2: {API_KEY_DEEPSEEK2[:5]}...")
|
21 |
-
|
22 |
-
# Ensure all API keys are loaded
|
23 |
-
if "MISSING_KEY" in [API_KEY_LLAMA, API_KEY_GEMMA, API_KEY_DEEPSEEK1, API_KEY_DEEPSEEK2]:
|
24 |
-
raise ValueError("❌ ERROR: One or more API keys are missing from the .env file!")
|
25 |
-
|
26 |
-
# Create OpenAI clients for each model
|
27 |
llama_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_LLAMA)
|
28 |
gemma_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_GEMMA)
|
29 |
deepseek_client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_DEEPSEEK1)
|
30 |
deepseek_client2 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_DEEPSEEK2)
|
31 |
|
32 |
-
# Function to query Llama
|
33 |
def query_llama(user_input, results):
|
34 |
try:
|
35 |
-
|
36 |
model="meta-llama/llama-3.2-3b-instruct:free",
|
37 |
messages=[{"role": "user", "content": user_input}]
|
38 |
)
|
39 |
-
results["Llama"] =
|
40 |
except Exception as e:
|
41 |
results["Llama"] = f"Error: {str(e)}"
|
42 |
|
43 |
-
# Function to query Gemma
|
44 |
def query_gemma(user_input, results):
|
45 |
try:
|
46 |
-
|
47 |
model="google/gemma-2-9b-it:free",
|
48 |
messages=[{"role": "user", "content": user_input}]
|
49 |
)
|
50 |
-
results["Gemma"] =
|
51 |
except Exception as e:
|
52 |
results["Gemma"] = f"Error: {str(e)}"
|
53 |
|
54 |
-
# Function to query DeepSeek
|
55 |
def query_deepseek_1(user_input, results):
|
56 |
try:
|
57 |
-
|
58 |
model="deepseek/deepseek-r1:free",
|
59 |
messages=[{"role": "user", "content": user_input}]
|
60 |
)
|
61 |
-
results["DeepSeek1"] =
|
62 |
except Exception as e:
|
63 |
results["DeepSeek1"] = f"Error: {str(e)}"
|
64 |
|
65 |
-
# Function to refine responses using DeepSeek
|
66 |
def refine_response(user_input):
|
67 |
try:
|
68 |
results = {}
|
69 |
|
70 |
-
#
|
71 |
threads = [
|
72 |
threading.Thread(target=query_llama, args=(user_input, results)),
|
73 |
threading.Thread(target=query_gemma, args=(user_input, results)),
|
@@ -78,33 +64,33 @@ def refine_response(user_input):
|
|
78 |
for thread in threads:
|
79 |
thread.start()
|
80 |
|
81 |
-
# Wait for all threads to
|
82 |
for thread in threads:
|
83 |
thread.join()
|
84 |
|
85 |
-
#
|
86 |
valid_responses = {k: v.strip() for k, v in results.items() if v and "Error" not in v}
|
87 |
-
|
88 |
if len(valid_responses) < 2:
|
89 |
return "\n\n".join(f"{k} Response: {v}" for k, v in valid_responses.items())
|
90 |
|
91 |
-
# Prepare
|
92 |
improvement_prompt = f"""
|
93 |
-
Here are
|
94 |
|
95 |
Response 1 (Llama): {results.get("Llama", "N/A")}
|
96 |
Response 2 (Gemma): {results.get("Gemma", "N/A")}
|
97 |
Response 3 (DeepSeek1): {results.get("DeepSeek1", "N/A")}
|
98 |
|
99 |
-
Please
|
100 |
"""
|
101 |
|
102 |
-
#
|
103 |
try:
|
104 |
refined_completion = deepseek_client2.chat.completions.create(
|
105 |
model="deepseek/deepseek-r1:free",
|
106 |
messages=[{"role": "user", "content": improvement_prompt}]
|
107 |
)
|
|
|
108 |
refined_content = refined_completion.choices[0].message.content
|
109 |
return refined_content if refined_content.strip() else "Refinement failed, returning best response."
|
110 |
except Exception as e:
|
@@ -113,14 +99,15 @@ def refine_response(user_input):
|
|
113 |
except Exception as e:
|
114 |
return f"Unexpected error: {str(e)}"
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
fn=refine_response,
|
119 |
-
inputs=gr.Textbox(
|
120 |
-
outputs="
|
121 |
-
title="Multi-
|
122 |
-
description="
|
123 |
)
|
124 |
|
125 |
-
#
|
126 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import threading
|
3 |
+
import os
|
4 |
from openai import OpenAI
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load API Keys from environment variables
|
7 |
+
API_KEY_LLAMA = os.getenv("OPENROUTER_API_KEY1")
|
8 |
+
API_KEY_GEMMA = os.getenv("OPENROUTER_API_KEY2")
|
9 |
+
API_KEY_DEEPSEEK1 = os.getenv("OPENROUTER_API_KEY3")
|
10 |
+
API_KEY_DEEPSEEK2 = os.getenv("OPENROUTER_API_KEY4")
|
11 |
|
12 |
+
# Initialize OpenAI clients for each API key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
llama_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_LLAMA)
|
14 |
gemma_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_GEMMA)
|
15 |
deepseek_client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_DEEPSEEK1)
|
16 |
deepseek_client2 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_DEEPSEEK2)
|
17 |
|
18 |
+
# Function to query Llama
|
19 |
def query_llama(user_input, results):
|
20 |
try:
|
21 |
+
response = llama_client.chat.completions.create(
|
22 |
model="meta-llama/llama-3.2-3b-instruct:free",
|
23 |
messages=[{"role": "user", "content": user_input}]
|
24 |
)
|
25 |
+
results["Llama"] = response.choices[0].message.content
|
26 |
except Exception as e:
|
27 |
results["Llama"] = f"Error: {str(e)}"
|
28 |
|
29 |
+
# Function to query Gemma
|
30 |
def query_gemma(user_input, results):
|
31 |
try:
|
32 |
+
response = gemma_client.chat.completions.create(
|
33 |
model="google/gemma-2-9b-it:free",
|
34 |
messages=[{"role": "user", "content": user_input}]
|
35 |
)
|
36 |
+
results["Gemma"] = response.choices[0].message.content
|
37 |
except Exception as e:
|
38 |
results["Gemma"] = f"Error: {str(e)}"
|
39 |
|
40 |
+
# Function to query DeepSeek-1
|
41 |
def query_deepseek_1(user_input, results):
|
42 |
try:
|
43 |
+
response = deepseek_client1.chat.completions.create(
|
44 |
model="deepseek/deepseek-r1:free",
|
45 |
messages=[{"role": "user", "content": user_input}]
|
46 |
)
|
47 |
+
results["DeepSeek1"] = response.choices[0].message.content
|
48 |
except Exception as e:
|
49 |
results["DeepSeek1"] = f"Error: {str(e)}"
|
50 |
|
51 |
+
# Function to refine responses using DeepSeek-2
|
52 |
def refine_response(user_input):
|
53 |
try:
|
54 |
results = {}
|
55 |
|
56 |
+
# Start threads for parallel API calls
|
57 |
threads = [
|
58 |
threading.Thread(target=query_llama, args=(user_input, results)),
|
59 |
threading.Thread(target=query_gemma, args=(user_input, results)),
|
|
|
64 |
for thread in threads:
|
65 |
thread.start()
|
66 |
|
67 |
+
# Wait for all threads to finish
|
68 |
for thread in threads:
|
69 |
thread.join()
|
70 |
|
71 |
+
# Filter valid responses
|
72 |
valid_responses = {k: v.strip() for k, v in results.items() if v and "Error" not in v}
|
|
|
73 |
if len(valid_responses) < 2:
|
74 |
return "\n\n".join(f"{k} Response: {v}" for k, v in valid_responses.items())
|
75 |
|
76 |
+
# Prepare refined prompt
|
77 |
improvement_prompt = f"""
|
78 |
+
Here are AI-generated responses:
|
79 |
|
80 |
Response 1 (Llama): {results.get("Llama", "N/A")}
|
81 |
Response 2 (Gemma): {results.get("Gemma", "N/A")}
|
82 |
Response 3 (DeepSeek1): {results.get("DeepSeek1", "N/A")}
|
83 |
|
84 |
+
Please improve the clarity and coherence, and generate a refined response.
|
85 |
"""
|
86 |
|
87 |
+
# Send to DeepSeek-2 for final refinement
|
88 |
try:
|
89 |
refined_completion = deepseek_client2.chat.completions.create(
|
90 |
model="deepseek/deepseek-r1:free",
|
91 |
messages=[{"role": "user", "content": improvement_prompt}]
|
92 |
)
|
93 |
+
|
94 |
refined_content = refined_completion.choices[0].message.content
|
95 |
return refined_content if refined_content.strip() else "Refinement failed, returning best response."
|
96 |
except Exception as e:
|
|
|
99 |
except Exception as e:
|
100 |
return f"Unexpected error: {str(e)}"
|
101 |
|
102 |
+
# Gradio Interface
|
103 |
+
interface = gr.Interface(
|
104 |
+
fn=refine_response,
|
105 |
+
inputs=gr.Textbox(label="Enter your question"),
|
106 |
+
outputs=gr.Textbox(label="AI Response"),
|
107 |
+
title="Multi-API AI Chat",
|
108 |
+
description="Ask a question and receive a response refined by multiple AI models.",
|
109 |
)
|
110 |
|
111 |
+
# Run the app
|
112 |
+
if __name__ == "__main__":
|
113 |
+
interface.launch(debug=True)
|