Athspi commited on
Commit
636ca5f
·
verified ·
1 Parent(s): 66e13d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -258
app.py CHANGED
@@ -10,262 +10,82 @@ from typing import List, Dict, Tuple
10
  from sklearn.metrics.pairwise import cosine_similarity
11
  from sentence_transformers import SentenceTransformer
12
 
13
- class AGICognitiveSystem:
14
- def __init__(self):
15
- self.api_keys = {
16
- "GEMINI": os.environ.get("GEMINI_API_KEY"),
17
- "MISTRAL": os.environ.get("MISTRAL_API_KEY"),
18
- "OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
19
- "AZURE": os.environ.get("AZURE_API_KEY")
20
- }
21
- self.validate_keys()
22
-
23
- # Initialize models and cognitive components
24
- self.init_models()
25
- self.init_cognitive_modules()
26
- self.init_knowledge_graph()
27
-
28
- # Initialize sentence transformer for semantic analysis
29
- self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
30
-
31
- # Cognitive configuration
32
- self.cognitive_config = {
33
- "depth": 5, # Levels of recursive reasoning
34
- "temperature_strategy": "adaptive",
35
- "confidence_threshold": 0.85,
36
- "max_retries": 3,
37
- "metacognition_interval": 2
38
- }
39
-
40
- self.thought_history = []
41
- self.cognitive_metrics = {
42
- "processing_time": [],
43
- "confidence_scores": [],
44
- "error_rates": []
45
- }
46
-
47
- def validate_keys(self):
48
- for key, value in self.api_keys.items():
49
- if not value:
50
- raise ValueError(f"Missing API key: {key}")
51
-
52
- def init_models(self):
53
- """Initialize all AI models with specialized roles"""
54
- # Google Gemini
55
- genai.configure(api_key=self.api_keys["GEMINI"])
56
- self.gemini = genai.GenerativeModel(
57
- "gemini-2.0-pro-exp-02-05",
58
- generation_config={"temperature": 0.5, "max_output_tokens": 8192}
59
- )
60
-
61
- # Azure GPT-4o
62
- self.gpt4o = OpenAI(
63
- base_url="https://models.inference.ai.azure.com",
64
- api_key=self.api_keys["AZURE"]
65
- )
66
-
67
- # Model registry with specialized roles
68
- self.model_registry = {
69
- "intuition": "mistral-large-latest",
70
- "analysis": "gpt-4o",
71
- "critique": "meta-llama/llama-3.3-70b-instruct:free",
72
- "creativity": "gemini-2.0-pro-exp-02-05",
73
- "validation": "deepseek/deepseek-chat:free",
74
- "metacognition": "gpt-4o",
75
- "emotional_intelligence": "qwen/qwen-vl-plus:free"
76
- }
 
 
 
 
 
 
 
 
 
77
 
78
- def init_cognitive_modules(self):
79
- """Initialize specialized cognitive processors"""
80
- self.modules = {
81
- "working_memory": [],
82
- "long_term_memory": [],
83
- "emotional_context": {"valence": 0.5, "arousal": 0.5},
84
- "error_correction": [],
85
- "metacognition_stack": []
86
- }
87
-
88
- def init_knowledge_graph(self):
89
- """Initialize semantic knowledge network"""
90
- self.knowledge_graph = {
91
- "nodes": [],
92
- "edges": [],
93
- "embeddings": np.array([])
94
- }
95
-
96
- def cognitive_flow(self, query: str) -> Tuple[str, dict]:
97
- """Multi-layered cognitive processing pipeline"""
98
- try:
99
- # Stage 1: Perception & Contextualization
100
- context = self.perceive_context(query)
101
-
102
- # Stage 2: Core Reasoning Process
103
- solutions = self.recursive_reasoning(query, context)
104
-
105
- # Stage 3: Emotional Alignment
106
- emotionally_aligned = self.apply_emotional_intelligence(solutions)
107
-
108
- # Stage 4: Metacognitive Review
109
- validated = self.metacognitive_review(emotionally_aligned)
110
-
111
- # Stage 5: Knowledge Integration
112
- self.update_knowledge_graph(query, validated)
113
-
114
- return validated, {
115
- "reasoning_steps": self.thought_history[-5:],
116
- "confidence": self.calculate_confidence(validated),
117
- "semantic_coherence": self.analyze_coherence(validated)
118
- }
119
-
120
- except Exception as e:
121
- self.handle_error(e)
122
- return "Cognitive processing failed", {}
123
-
124
- def recursive_reasoning(self, query: str, context: dict, depth: int = 0) -> List[dict]:
125
- """Deep recursive reasoning with backtracking"""
126
- if depth >= self.cognitive_config["depth"]:
127
- return []
128
-
129
- # Generate initial hypotheses
130
- hypotheses = self.generate_hypotheses(query, context)
131
-
132
- # Evaluate hypotheses
133
- evaluated = []
134
- for hypothesis in hypotheses:
135
- analysis = self.analyze_hypothesis(hypothesis, context)
136
- critique = self.critique_analysis(analysis)
137
-
138
- if self.evaluate_critique(critique):
139
- refined = self.refine_hypothesis(hypothesis, critique)
140
- evaluated.append({
141
- "hypothesis": refined,
142
- "confidence": self.calculate_confidence(refined),
143
- "depth": depth
144
- })
145
- # Recursive deepening
146
- evaluated += self.recursive_reasoning(refined, context, depth+1)
147
-
148
- return self.rank_solutions(evaluated)
149
-
150
- def generate_hypotheses(self, query: str, context: dict) -> List[str]:
151
- """Generate potential solutions using multiple models"""
152
- hypotheses = []
153
-
154
- # Intuitive generation
155
- hypotheses.append(self.call_model(
156
- "intuition",
157
- f"Generate intuitive hypothesis for: {query}",
158
- context
159
- ))
160
-
161
- # Analytical generation
162
- hypotheses.append(self.call_model(
163
- "analysis",
164
- f"Generate analytical solution for: {query}",
165
- context
166
- ))
167
-
168
- # Creative generation
169
- hypotheses.append(self.call_model(
170
- "creativity",
171
- f"Generate creative approach for: {query}",
172
- context
173
- ))
174
-
175
- return [h for h in hypotheses if h]
176
-
177
- def call_model(self, module: str, prompt: str, context: dict) -> str:
178
- """Advanced model caller with adaptive temperature and retry"""
179
- temperature = self.calculate_temperature(context)
180
- retries = 0
181
-
182
- while retries < self.cognitive_config["max_retries"]:
183
- try:
184
- if module in ["intuition", "metacognition"]:
185
- return self._call_mistral(prompt, temperature)
186
- elif module == "analysis":
187
- return self._call_gpt4o(prompt, temperature)
188
- elif module == "creativity":
189
- return self.gemini.generate_content(prompt).text
190
- elif module == "emotional_intelligence":
191
- return self._call_qwen(prompt)
192
- elif module == "validation":
193
- return self._call_deepseek(prompt)
194
-
195
- except Exception as e:
196
- retries += 1
197
- self.handle_error(e)
198
-
199
- return ""
200
-
201
- def _call_mistral(self, prompt: str, temperature: float) -> str:
202
- """Call Mistral API"""
203
- headers = {
204
- "Authorization": f"Bearer {self.api_keys['MISTRAL']}",
205
- "Content-Type": "application/json"
206
- }
207
-
208
- payload = {
209
- "model": self.model_registry["intuition"],
210
- "messages": [{"role": "user", "content": prompt}],
211
- "temperature": temperature,
212
- "max_tokens": 2000
213
- }
214
-
215
- response = requests.post(
216
- "https://api.mistral.ai/v1/chat/completions",
217
- headers=headers,
218
- json=payload
219
- )
220
-
221
- return response.json()['choices'][0]['message']['content']
222
-
223
- def _call_gpt4o(self, prompt: str, temperature: float) -> str:
224
- """Call GPT-4o via Azure"""
225
- try:
226
- response = self.gpt4o.chat.completions.create(
227
- model=self.model_registry["analysis"],
228
- messages=[{"role": "user", "content": prompt}],
229
- temperature=temperature,
230
- max_tokens=2000
231
- )
232
- return response.choices[0].message.content
233
- except Exception as e:
234
- raise RuntimeError(f"GPT-4o Error: {str(e)}")
235
-
236
- def calculate_confidence(self, response: str) -> float:
237
- """Calculate semantic confidence score"""
238
- query_embed = self.sentence_model.encode(response)
239
- knowledge_embeds = self.knowledge_graph["embeddings"]
240
-
241
- if knowledge_embeds.size == 0:
242
- return 0.5 # Neutral confidence
243
-
244
- similarities = cosine_similarity([query_embed], knowledge_embeds)
245
- return np.max(similarities)
246
-
247
- def update_knowledge_graph(self, query: str, response: str):
248
- """Dynamic knowledge integration"""
249
- embedding = self.sentence_model.encode(response)
250
-
251
- if self.knowledge_graph["embeddings"].size == 0:
252
- self.knowledge_graph["embeddings"] = np.array([embedding])
253
- else:
254
- self.knowledge_graph["embeddings"] = np.vstack(
255
- [self.knowledge_graph["embeddings"], embedding]
256
- )
257
-
258
- self.knowledge_graph["nodes"].append({
259
- "id": len(self.knowledge_graph["nodes"]),
260
- "content": response,
261
- "embedding": embedding.tolist()
262
- })
263
-
264
- def handle_error(self, error: Exception):
265
- """Error handling and recovery"""
266
- self.cognitive_metrics["error_rates"].append(time.time())
267
- print(f"System Error: {str(error)}")
268
- # Implement error recovery logic here
269
 
270
  def create_agi_interface():
271
  try:
@@ -288,16 +108,35 @@ def create_agi_interface():
288
  depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
289
  creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
290
 
 
291
  output_panel = gr.Markdown()
292
  visualization = gr.HTML()
293
  metrics = gr.DataFrame(headers=["Metric", "Value"])
294
 
 
 
 
 
 
 
 
 
295
  input_panel.submit(
296
- fn=agi.cognitive_flow,
 
 
 
 
 
297
  inputs=input_panel,
298
- outputs=[output_panel, metrics]
 
 
 
 
 
299
  )
300
-
301
  return demo
302
 
303
  if __name__ == "__main__":
 
10
  from sklearn.metrics.pairwise import cosine_similarity
11
  from sentence_transformers import SentenceTransformer
12
 
13
+ # Animation CSS and HTML
14
+ LOADING_ANIMATION = """
15
+ <style>
16
+ .thinking-animation {
17
+ display: flex;
18
+ justify-content: center;
19
+ align-items: center;
20
+ height: 100px;
21
+ }
22
+
23
+ .dot-flashing {
24
+ position: relative;
25
+ width: 10px;
26
+ height: 10px;
27
+ border-radius: 5px;
28
+ background-color: #4CAF50;
29
+ color: #4CAF50;
30
+ animation: dotFlashing 1s infinite linear alternate;
31
+ animation-delay: .5s;
32
+ }
33
+
34
+ .dot-flashing::before, .dot-flashing::after {
35
+ content: '';
36
+ display: inline-block;
37
+ position: absolute;
38
+ top: 0;
39
+ }
40
+
41
+ .dot-flashing::before {
42
+ left: -15px;
43
+ width: 10px;
44
+ height: 10px;
45
+ border-radius: 5px;
46
+ background-color: #4CAF50;
47
+ color: #4CAF50;
48
+ animation: dotFlashing 1s infinite alternate;
49
+ animation-delay: 0s;
50
+ }
51
+
52
+ .dot-flashing::after {
53
+ left: 15px;
54
+ width: 10px;
55
+ height: 10px;
56
+ border-radius: 5px;
57
+ background-color: #4CAF50;
58
+ color: #4CAF50;
59
+ animation: dotFlashing 1s infinite alternate;
60
+ animation-delay: 1s;
61
+ }
62
+
63
+ @keyframes dotFlashing {
64
+ 0% { background-color: #4CAF50; }
65
+ 50%, 100% { background-color: rgba(76, 175, 80, 0.2); }
66
+ }
67
+
68
+ @keyframes spin {
69
+ 0% { transform: rotate(0deg); }
70
+ 100% { transform: rotate(360deg); }
71
+ }
72
+
73
+ .thinking-text {
74
+ text-align: center;
75
+ margin-top: 20px;
76
+ font-weight: bold;
77
+ color: #4CAF50;
78
+ }
79
+ </style>
80
+
81
+ <div class="thinking-animation">
82
+ <div class="dot-flashing"></div>
83
+ <div class="thinking-text">AGI Thinking...</div>
84
+ </div>
85
+ """
86
 
87
+ class AGICognitiveSystem:
88
+ # ... (keep previous class implementation unchanged) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  def create_agi_interface():
91
  try:
 
108
  depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
109
  creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
110
 
111
+ loading = gr.HTML(LOADING_ANIMATION, visible=False)
112
  output_panel = gr.Markdown()
113
  visualization = gr.HTML()
114
  metrics = gr.DataFrame(headers=["Metric", "Value"])
115
 
116
+ def toggle_loading():
117
+ return gr.HTML(visible=True)
118
+
119
+ def process_query(query):
120
+ start_time = time.time()
121
+ result, metrics = agi.cognitive_flow(query)
122
+ return result, metrics
123
+
124
  input_panel.submit(
125
+ fn=toggle_loading,
126
+ inputs=None,
127
+ outputs=loading,
128
+ queue=False
129
+ ).then(
130
+ fn=process_query,
131
  inputs=input_panel,
132
+ outputs=[output_panel, metrics],
133
+ ).then(
134
+ lambda: gr.HTML(visible=False),
135
+ inputs=None,
136
+ outputs=loading,
137
+ queue=False
138
  )
139
+
140
  return demo
141
 
142
  if __name__ == "__main__":