Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,262 +10,82 @@ from typing import List, Dict, Tuple
|
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
self.modules = {
|
81 |
-
"working_memory": [],
|
82 |
-
"long_term_memory": [],
|
83 |
-
"emotional_context": {"valence": 0.5, "arousal": 0.5},
|
84 |
-
"error_correction": [],
|
85 |
-
"metacognition_stack": []
|
86 |
-
}
|
87 |
-
|
88 |
-
def init_knowledge_graph(self):
|
89 |
-
"""Initialize semantic knowledge network"""
|
90 |
-
self.knowledge_graph = {
|
91 |
-
"nodes": [],
|
92 |
-
"edges": [],
|
93 |
-
"embeddings": np.array([])
|
94 |
-
}
|
95 |
-
|
96 |
-
def cognitive_flow(self, query: str) -> Tuple[str, dict]:
|
97 |
-
"""Multi-layered cognitive processing pipeline"""
|
98 |
-
try:
|
99 |
-
# Stage 1: Perception & Contextualization
|
100 |
-
context = self.perceive_context(query)
|
101 |
-
|
102 |
-
# Stage 2: Core Reasoning Process
|
103 |
-
solutions = self.recursive_reasoning(query, context)
|
104 |
-
|
105 |
-
# Stage 3: Emotional Alignment
|
106 |
-
emotionally_aligned = self.apply_emotional_intelligence(solutions)
|
107 |
-
|
108 |
-
# Stage 4: Metacognitive Review
|
109 |
-
validated = self.metacognitive_review(emotionally_aligned)
|
110 |
-
|
111 |
-
# Stage 5: Knowledge Integration
|
112 |
-
self.update_knowledge_graph(query, validated)
|
113 |
-
|
114 |
-
return validated, {
|
115 |
-
"reasoning_steps": self.thought_history[-5:],
|
116 |
-
"confidence": self.calculate_confidence(validated),
|
117 |
-
"semantic_coherence": self.analyze_coherence(validated)
|
118 |
-
}
|
119 |
-
|
120 |
-
except Exception as e:
|
121 |
-
self.handle_error(e)
|
122 |
-
return "Cognitive processing failed", {}
|
123 |
-
|
124 |
-
def recursive_reasoning(self, query: str, context: dict, depth: int = 0) -> List[dict]:
|
125 |
-
"""Deep recursive reasoning with backtracking"""
|
126 |
-
if depth >= self.cognitive_config["depth"]:
|
127 |
-
return []
|
128 |
-
|
129 |
-
# Generate initial hypotheses
|
130 |
-
hypotheses = self.generate_hypotheses(query, context)
|
131 |
-
|
132 |
-
# Evaluate hypotheses
|
133 |
-
evaluated = []
|
134 |
-
for hypothesis in hypotheses:
|
135 |
-
analysis = self.analyze_hypothesis(hypothesis, context)
|
136 |
-
critique = self.critique_analysis(analysis)
|
137 |
-
|
138 |
-
if self.evaluate_critique(critique):
|
139 |
-
refined = self.refine_hypothesis(hypothesis, critique)
|
140 |
-
evaluated.append({
|
141 |
-
"hypothesis": refined,
|
142 |
-
"confidence": self.calculate_confidence(refined),
|
143 |
-
"depth": depth
|
144 |
-
})
|
145 |
-
# Recursive deepening
|
146 |
-
evaluated += self.recursive_reasoning(refined, context, depth+1)
|
147 |
-
|
148 |
-
return self.rank_solutions(evaluated)
|
149 |
-
|
150 |
-
def generate_hypotheses(self, query: str, context: dict) -> List[str]:
|
151 |
-
"""Generate potential solutions using multiple models"""
|
152 |
-
hypotheses = []
|
153 |
-
|
154 |
-
# Intuitive generation
|
155 |
-
hypotheses.append(self.call_model(
|
156 |
-
"intuition",
|
157 |
-
f"Generate intuitive hypothesis for: {query}",
|
158 |
-
context
|
159 |
-
))
|
160 |
-
|
161 |
-
# Analytical generation
|
162 |
-
hypotheses.append(self.call_model(
|
163 |
-
"analysis",
|
164 |
-
f"Generate analytical solution for: {query}",
|
165 |
-
context
|
166 |
-
))
|
167 |
-
|
168 |
-
# Creative generation
|
169 |
-
hypotheses.append(self.call_model(
|
170 |
-
"creativity",
|
171 |
-
f"Generate creative approach for: {query}",
|
172 |
-
context
|
173 |
-
))
|
174 |
-
|
175 |
-
return [h for h in hypotheses if h]
|
176 |
-
|
177 |
-
def call_model(self, module: str, prompt: str, context: dict) -> str:
|
178 |
-
"""Advanced model caller with adaptive temperature and retry"""
|
179 |
-
temperature = self.calculate_temperature(context)
|
180 |
-
retries = 0
|
181 |
-
|
182 |
-
while retries < self.cognitive_config["max_retries"]:
|
183 |
-
try:
|
184 |
-
if module in ["intuition", "metacognition"]:
|
185 |
-
return self._call_mistral(prompt, temperature)
|
186 |
-
elif module == "analysis":
|
187 |
-
return self._call_gpt4o(prompt, temperature)
|
188 |
-
elif module == "creativity":
|
189 |
-
return self.gemini.generate_content(prompt).text
|
190 |
-
elif module == "emotional_intelligence":
|
191 |
-
return self._call_qwen(prompt)
|
192 |
-
elif module == "validation":
|
193 |
-
return self._call_deepseek(prompt)
|
194 |
-
|
195 |
-
except Exception as e:
|
196 |
-
retries += 1
|
197 |
-
self.handle_error(e)
|
198 |
-
|
199 |
-
return ""
|
200 |
-
|
201 |
-
def _call_mistral(self, prompt: str, temperature: float) -> str:
|
202 |
-
"""Call Mistral API"""
|
203 |
-
headers = {
|
204 |
-
"Authorization": f"Bearer {self.api_keys['MISTRAL']}",
|
205 |
-
"Content-Type": "application/json"
|
206 |
-
}
|
207 |
-
|
208 |
-
payload = {
|
209 |
-
"model": self.model_registry["intuition"],
|
210 |
-
"messages": [{"role": "user", "content": prompt}],
|
211 |
-
"temperature": temperature,
|
212 |
-
"max_tokens": 2000
|
213 |
-
}
|
214 |
-
|
215 |
-
response = requests.post(
|
216 |
-
"https://api.mistral.ai/v1/chat/completions",
|
217 |
-
headers=headers,
|
218 |
-
json=payload
|
219 |
-
)
|
220 |
-
|
221 |
-
return response.json()['choices'][0]['message']['content']
|
222 |
-
|
223 |
-
def _call_gpt4o(self, prompt: str, temperature: float) -> str:
|
224 |
-
"""Call GPT-4o via Azure"""
|
225 |
-
try:
|
226 |
-
response = self.gpt4o.chat.completions.create(
|
227 |
-
model=self.model_registry["analysis"],
|
228 |
-
messages=[{"role": "user", "content": prompt}],
|
229 |
-
temperature=temperature,
|
230 |
-
max_tokens=2000
|
231 |
-
)
|
232 |
-
return response.choices[0].message.content
|
233 |
-
except Exception as e:
|
234 |
-
raise RuntimeError(f"GPT-4o Error: {str(e)}")
|
235 |
-
|
236 |
-
def calculate_confidence(self, response: str) -> float:
|
237 |
-
"""Calculate semantic confidence score"""
|
238 |
-
query_embed = self.sentence_model.encode(response)
|
239 |
-
knowledge_embeds = self.knowledge_graph["embeddings"]
|
240 |
-
|
241 |
-
if knowledge_embeds.size == 0:
|
242 |
-
return 0.5 # Neutral confidence
|
243 |
-
|
244 |
-
similarities = cosine_similarity([query_embed], knowledge_embeds)
|
245 |
-
return np.max(similarities)
|
246 |
-
|
247 |
-
def update_knowledge_graph(self, query: str, response: str):
|
248 |
-
"""Dynamic knowledge integration"""
|
249 |
-
embedding = self.sentence_model.encode(response)
|
250 |
-
|
251 |
-
if self.knowledge_graph["embeddings"].size == 0:
|
252 |
-
self.knowledge_graph["embeddings"] = np.array([embedding])
|
253 |
-
else:
|
254 |
-
self.knowledge_graph["embeddings"] = np.vstack(
|
255 |
-
[self.knowledge_graph["embeddings"], embedding]
|
256 |
-
)
|
257 |
-
|
258 |
-
self.knowledge_graph["nodes"].append({
|
259 |
-
"id": len(self.knowledge_graph["nodes"]),
|
260 |
-
"content": response,
|
261 |
-
"embedding": embedding.tolist()
|
262 |
-
})
|
263 |
-
|
264 |
-
def handle_error(self, error: Exception):
|
265 |
-
"""Error handling and recovery"""
|
266 |
-
self.cognitive_metrics["error_rates"].append(time.time())
|
267 |
-
print(f"System Error: {str(error)}")
|
268 |
-
# Implement error recovery logic here
|
269 |
|
270 |
def create_agi_interface():
|
271 |
try:
|
@@ -288,16 +108,35 @@ def create_agi_interface():
|
|
288 |
depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
|
289 |
creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
|
290 |
|
|
|
291 |
output_panel = gr.Markdown()
|
292 |
visualization = gr.HTML()
|
293 |
metrics = gr.DataFrame(headers=["Metric", "Value"])
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
input_panel.submit(
|
296 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
297 |
inputs=input_panel,
|
298 |
-
outputs=[output_panel, metrics]
|
|
|
|
|
|
|
|
|
|
|
299 |
)
|
300 |
-
|
301 |
return demo
|
302 |
|
303 |
if __name__ == "__main__":
|
|
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
|
13 |
+
# Animation CSS and HTML
|
14 |
+
LOADING_ANIMATION = """
|
15 |
+
<style>
|
16 |
+
.thinking-animation {
|
17 |
+
display: flex;
|
18 |
+
justify-content: center;
|
19 |
+
align-items: center;
|
20 |
+
height: 100px;
|
21 |
+
}
|
22 |
+
|
23 |
+
.dot-flashing {
|
24 |
+
position: relative;
|
25 |
+
width: 10px;
|
26 |
+
height: 10px;
|
27 |
+
border-radius: 5px;
|
28 |
+
background-color: #4CAF50;
|
29 |
+
color: #4CAF50;
|
30 |
+
animation: dotFlashing 1s infinite linear alternate;
|
31 |
+
animation-delay: .5s;
|
32 |
+
}
|
33 |
+
|
34 |
+
.dot-flashing::before, .dot-flashing::after {
|
35 |
+
content: '';
|
36 |
+
display: inline-block;
|
37 |
+
position: absolute;
|
38 |
+
top: 0;
|
39 |
+
}
|
40 |
+
|
41 |
+
.dot-flashing::before {
|
42 |
+
left: -15px;
|
43 |
+
width: 10px;
|
44 |
+
height: 10px;
|
45 |
+
border-radius: 5px;
|
46 |
+
background-color: #4CAF50;
|
47 |
+
color: #4CAF50;
|
48 |
+
animation: dotFlashing 1s infinite alternate;
|
49 |
+
animation-delay: 0s;
|
50 |
+
}
|
51 |
+
|
52 |
+
.dot-flashing::after {
|
53 |
+
left: 15px;
|
54 |
+
width: 10px;
|
55 |
+
height: 10px;
|
56 |
+
border-radius: 5px;
|
57 |
+
background-color: #4CAF50;
|
58 |
+
color: #4CAF50;
|
59 |
+
animation: dotFlashing 1s infinite alternate;
|
60 |
+
animation-delay: 1s;
|
61 |
+
}
|
62 |
+
|
63 |
+
@keyframes dotFlashing {
|
64 |
+
0% { background-color: #4CAF50; }
|
65 |
+
50%, 100% { background-color: rgba(76, 175, 80, 0.2); }
|
66 |
+
}
|
67 |
+
|
68 |
+
@keyframes spin {
|
69 |
+
0% { transform: rotate(0deg); }
|
70 |
+
100% { transform: rotate(360deg); }
|
71 |
+
}
|
72 |
+
|
73 |
+
.thinking-text {
|
74 |
+
text-align: center;
|
75 |
+
margin-top: 20px;
|
76 |
+
font-weight: bold;
|
77 |
+
color: #4CAF50;
|
78 |
+
}
|
79 |
+
</style>
|
80 |
+
|
81 |
+
<div class="thinking-animation">
|
82 |
+
<div class="dot-flashing"></div>
|
83 |
+
<div class="thinking-text">AGI Thinking...</div>
|
84 |
+
</div>
|
85 |
+
"""
|
86 |
|
87 |
+
class AGICognitiveSystem:
|
88 |
+
# ... (keep previous class implementation unchanged) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def create_agi_interface():
|
91 |
try:
|
|
|
108 |
depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
|
109 |
creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
|
110 |
|
111 |
+
loading = gr.HTML(LOADING_ANIMATION, visible=False)
|
112 |
output_panel = gr.Markdown()
|
113 |
visualization = gr.HTML()
|
114 |
metrics = gr.DataFrame(headers=["Metric", "Value"])
|
115 |
|
116 |
+
def toggle_loading():
|
117 |
+
return gr.HTML(visible=True)
|
118 |
+
|
119 |
+
def process_query(query):
|
120 |
+
start_time = time.time()
|
121 |
+
result, metrics = agi.cognitive_flow(query)
|
122 |
+
return result, metrics
|
123 |
+
|
124 |
input_panel.submit(
|
125 |
+
fn=toggle_loading,
|
126 |
+
inputs=None,
|
127 |
+
outputs=loading,
|
128 |
+
queue=False
|
129 |
+
).then(
|
130 |
+
fn=process_query,
|
131 |
inputs=input_panel,
|
132 |
+
outputs=[output_panel, metrics],
|
133 |
+
).then(
|
134 |
+
lambda: gr.HTML(visible=False),
|
135 |
+
inputs=None,
|
136 |
+
outputs=loading,
|
137 |
+
queue=False
|
138 |
)
|
139 |
+
|
140 |
return demo
|
141 |
|
142 |
if __name__ == "__main__":
|